Database REAL AND COMPLEX NUMBERS Real and complex numbers - basic operations Reciprocals mulcanad  
				
		 
		
			
		 
		Description:   Cancellation of a nonzero factor on the left in an equation.  One-way
         deduction form of mulcand  .  (Contributed by David Moews , 28-Feb-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mulcanad.1 ⊢  ( 𝜑   →  𝐴   ∈  ℂ )  
					
						mulcanad.2 ⊢  ( 𝜑   →  𝐵   ∈  ℂ )  
					
						mulcanad.3 ⊢  ( 𝜑   →  𝐶   ∈  ℂ )  
					
						mulcanad.4 ⊢  ( 𝜑   →  𝐶   ≠  0 )  
					
						mulcanad.5 ⊢  ( 𝜑   →  ( 𝐶   ·  𝐴  )  =  ( 𝐶   ·  𝐵  ) )  
				
					Assertion 
					mulcanad ⊢   ( 𝜑   →  𝐴   =  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mulcanad.1 ⊢  ( 𝜑   →  𝐴   ∈  ℂ )  
						
							2 
								
							 
							mulcanad.2 ⊢  ( 𝜑   →  𝐵   ∈  ℂ )  
						
							3 
								
							 
							mulcanad.3 ⊢  ( 𝜑   →  𝐶   ∈  ℂ )  
						
							4 
								
							 
							mulcanad.4 ⊢  ( 𝜑   →  𝐶   ≠  0 )  
						
							5 
								
							 
							mulcanad.5 ⊢  ( 𝜑   →  ( 𝐶   ·  𝐴  )  =  ( 𝐶   ·  𝐵  ) )  
						
							6 
								1  2  3  4 
							 
							mulcand ⊢  ( 𝜑   →  ( ( 𝐶   ·  𝐴  )  =  ( 𝐶   ·  𝐵  )  ↔  𝐴   =  𝐵  ) )  
						
							7 
								5  6 
							 
							mpbid ⊢  ( 𝜑   →  𝐴   =  𝐵  )