Step |
Hyp |
Ref |
Expression |
1 |
|
mulcand.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
mulcand.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
mulcand.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
mulcand.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
5 |
|
recex |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ∃ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 1 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 1 ) |
7 |
|
oveq2 |
⊢ ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) → ( 𝑥 · ( 𝐶 · 𝐴 ) ) = ( 𝑥 · ( 𝐶 · 𝐵 ) ) ) |
8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝑥 ∈ ℂ ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝐶 ∈ ℂ ) |
10 |
8 9
|
mulcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · 𝐶 ) = ( 𝐶 · 𝑥 ) ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝐶 · 𝑥 ) = 1 ) |
12 |
10 11
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · 𝐶 ) = 1 ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝐴 ∈ ℂ ) |
15 |
8 9 14
|
mulassd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐴 ) = ( 𝑥 · ( 𝐶 · 𝐴 ) ) ) |
16 |
14
|
mulid2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
17 |
13 15 16
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · ( 𝐶 · 𝐴 ) ) = 𝐴 ) |
18 |
12
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐵 ) = ( 1 · 𝐵 ) ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝐵 ∈ ℂ ) |
20 |
8 9 19
|
mulassd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐵 ) = ( 𝑥 · ( 𝐶 · 𝐵 ) ) ) |
21 |
19
|
mulid2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 1 · 𝐵 ) = 𝐵 ) |
22 |
18 20 21
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · ( 𝐶 · 𝐵 ) ) = 𝐵 ) |
23 |
17 22
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · ( 𝐶 · 𝐴 ) ) = ( 𝑥 · ( 𝐶 · 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
24 |
7 23
|
syl5ib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) → 𝐴 = 𝐵 ) ) |
25 |
6 24
|
rexlimddv |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) → 𝐴 = 𝐵 ) ) |
26 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ) |
27 |
25 26
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |