Metamath Proof Explorer
		
		
		
		Description:  Cancellation law for multiplication.  Theorem I.7 of Apostol p. 18.
       (Contributed by NM, 26-Jan-1995)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mulcan.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | mulcan.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | mulcan.3 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | mulcan.4 | ⊢ 𝐶  ≠  0 | 
				
					|  | Assertion | mulcani | ⊢  ( ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 )  ↔  𝐴  =  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulcan.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | mulcan.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | mulcan.3 | ⊢ 𝐶  ∈  ℂ | 
						
							| 4 |  | mulcan.4 | ⊢ 𝐶  ≠  0 | 
						
							| 5 | 3 4 | pm3.2i | ⊢ ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) | 
						
							| 6 |  | mulcan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 7 | 1 2 5 6 | mp3an | ⊢ ( ( 𝐶  ·  𝐴 )  =  ( 𝐶  ·  𝐵 )  ↔  𝐴  =  𝐵 ) |