Metamath Proof Explorer
Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18.
(Contributed by NM, 26-Jan-1995)
|
|
Ref |
Expression |
|
Hypotheses |
mulcan.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mulcan.2 |
⊢ 𝐵 ∈ ℂ |
|
|
mulcan.3 |
⊢ 𝐶 ∈ ℂ |
|
|
mulcan.4 |
⊢ 𝐶 ≠ 0 |
|
Assertion |
mulcani |
⊢ ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mulcan.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
mulcan.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
mulcan.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
mulcan.4 |
⊢ 𝐶 ≠ 0 |
5 |
3 4
|
pm3.2i |
⊢ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) |
6 |
|
mulcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
7 |
1 2 5 6
|
mp3an |
⊢ ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) |