Step |
Hyp |
Ref |
Expression |
1 |
|
mulclpi |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) |
2 |
|
eleq1 |
⊢ ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → ( ( 𝐴 ·N 𝐵 ) ∈ N ↔ ( 𝐴 ·N 𝐶 ) ∈ N ) ) |
3 |
1 2
|
syl5ib |
⊢ ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐶 ) ∈ N ) ) |
4 |
3
|
imp |
⊢ ( ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ∧ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) → ( 𝐴 ·N 𝐶 ) ∈ N ) |
5 |
|
dmmulpi |
⊢ dom ·N = ( N × N ) |
6 |
|
0npi |
⊢ ¬ ∅ ∈ N |
7 |
5 6
|
ndmovrcl |
⊢ ( ( 𝐴 ·N 𝐶 ) ∈ N → ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) → 𝐶 ∈ N ) |
9 |
4 7 8
|
3syl |
⊢ ( ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ∧ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) → 𝐶 ∈ N ) |
10 |
|
mulpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) |
12 |
|
mulpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐶 ) = ( 𝐴 ·o 𝐶 ) ) |
13 |
12
|
adantlr |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐶 ) = ( 𝐴 ·o 𝐶 ) ) |
14 |
11 13
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ↔ ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ) ) |
15 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
16 |
|
pinn |
⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) |
17 |
|
pinn |
⊢ ( 𝐶 ∈ N → 𝐶 ∈ ω ) |
18 |
|
elni2 |
⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ) |
19 |
18
|
simprbi |
⊢ ( 𝐴 ∈ N → ∅ ∈ 𝐴 ) |
20 |
|
nnmcan |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
21 |
20
|
biimpd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
22 |
19 21
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ 𝐴 ∈ N ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
23 |
22
|
ex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
24 |
15 16 17 23
|
syl3an |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
25 |
24
|
3exp |
⊢ ( 𝐴 ∈ N → ( 𝐵 ∈ N → ( 𝐶 ∈ N → ( 𝐴 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) ) |
26 |
25
|
com4r |
⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ N → ( 𝐵 ∈ N → ( 𝐶 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) ) |
27 |
26
|
pm2.43i |
⊢ ( 𝐴 ∈ N → ( 𝐵 ∈ N → ( 𝐶 ∈ N → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) |
28 |
27
|
imp31 |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
29 |
14 28
|
sylbid |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) |
30 |
9 29
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ∧ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) |
31 |
30
|
exp32 |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) ) ) |
32 |
31
|
imp4b |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) → ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) → 𝐵 = 𝐶 ) ) |
33 |
32
|
pm2.43i |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) → 𝐵 = 𝐶 ) |
34 |
33
|
ex |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) → 𝐵 = 𝐶 ) ) |
35 |
|
oveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ) |
36 |
34 35
|
impbid1 |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·N 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |