| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) |
| 2 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
| 3 |
|
pinn |
⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) |
| 4 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |
| 5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |
| 6 |
|
elni2 |
⊢ ( 𝐵 ∈ N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝐵 ∈ N → ∅ ∈ 𝐵 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ∅ ∈ 𝐵 ) |
| 9 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 𝐵 ∈ ω ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 𝐴 ∈ ω ) |
| 11 |
|
elni2 |
⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ) |
| 12 |
11
|
simprbi |
⊢ ( 𝐴 ∈ N → ∅ ∈ 𝐴 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ∅ ∈ 𝐴 ) |
| 14 |
|
nnmordi |
⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 15 |
9 10 13 14
|
syl21anc |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 16 |
8 15
|
mpd |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) |
| 17 |
16
|
ne0d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ≠ ∅ ) |
| 18 |
|
elni |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ N ↔ ( ( 𝐴 ·o 𝐵 ) ∈ ω ∧ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
| 19 |
5 17 18
|
sylanbrc |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ∈ N ) |
| 20 |
1 19
|
eqeltrd |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) |