Step |
Hyp |
Ref |
Expression |
1 |
|
mulpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) |
2 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
3 |
|
pinn |
⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) |
4 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |
6 |
|
elni2 |
⊢ ( 𝐵 ∈ N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐵 ∈ N → ∅ ∈ 𝐵 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ∅ ∈ 𝐵 ) |
9 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 𝐵 ∈ ω ) |
10 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 𝐴 ∈ ω ) |
11 |
|
elni2 |
⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ) |
12 |
11
|
simprbi |
⊢ ( 𝐴 ∈ N → ∅ ∈ 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ∅ ∈ 𝐴 ) |
14 |
|
nnmordi |
⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
15 |
9 10 13 14
|
syl21anc |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
16 |
8 15
|
mpd |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) |
17 |
16
|
ne0d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ≠ ∅ ) |
18 |
|
elni |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ N ↔ ( ( 𝐴 ·o 𝐵 ) ∈ ω ∧ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
19 |
5 17 18
|
sylanbrc |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ∈ N ) |
20 |
1 19
|
eqeltrd |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) |