Metamath Proof Explorer


Theorem mulclpr

Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion mulclpr ( ( 𝐴P𝐵P ) → ( 𝐴 ·P 𝐵 ) ∈ P )

Proof

Step Hyp Ref Expression
1 df-mp ·P = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 ·Q 𝑧 ) } )
2 mulclnq ( ( 𝑦Q𝑧Q ) → ( 𝑦 ·Q 𝑧 ) ∈ Q )
3 ltmnq ( Q → ( 𝑓 <Q 𝑔 ↔ ( ·Q 𝑓 ) <Q ( ·Q 𝑔 ) ) )
4 mulcomnq ( 𝑥 ·Q 𝑦 ) = ( 𝑦 ·Q 𝑥 )
5 mulclprlem ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 ·Q ) → 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) )
6 1 2 3 4 5 genpcl ( ( 𝐴P𝐵P ) → ( 𝐴 ·P 𝐵 ) ∈ P )