Step |
Hyp |
Ref |
Expression |
1 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) |
2 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) |
3 |
|
recclnq |
⊢ ( ℎ ∈ Q → ( *Q ‘ ℎ ) ∈ Q ) |
4 |
3
|
adantl |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( *Q ‘ ℎ ) ∈ Q ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
|
ovex |
⊢ ( 𝑔 ·Q ℎ ) ∈ V |
7 |
|
ltmnq |
⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑧 ↔ ( 𝑤 ·Q 𝑦 ) <Q ( 𝑤 ·Q 𝑧 ) ) ) |
8 |
|
fvex |
⊢ ( *Q ‘ ℎ ) ∈ V |
9 |
|
mulcomnq |
⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) |
10 |
5 6 7 8 9
|
caovord2 |
⊢ ( ( *Q ‘ ℎ ) ∈ Q → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ) ) |
11 |
4 10
|
syl |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ) ) |
12 |
|
mulassnq |
⊢ ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = ( 𝑔 ·Q ( ℎ ·Q ( *Q ‘ ℎ ) ) ) |
13 |
|
recidnq |
⊢ ( ℎ ∈ Q → ( ℎ ·Q ( *Q ‘ ℎ ) ) = 1Q ) |
14 |
13
|
oveq2d |
⊢ ( ℎ ∈ Q → ( 𝑔 ·Q ( ℎ ·Q ( *Q ‘ ℎ ) ) ) = ( 𝑔 ·Q 1Q ) ) |
15 |
12 14
|
eqtrid |
⊢ ( ℎ ∈ Q → ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = ( 𝑔 ·Q 1Q ) ) |
16 |
|
mulidnq |
⊢ ( 𝑔 ∈ Q → ( 𝑔 ·Q 1Q ) = 𝑔 ) |
17 |
15 16
|
sylan9eqr |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = 𝑔 ) |
18 |
17
|
breq2d |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
19 |
11 18
|
bitrd |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
20 |
1 2 19
|
syl2an |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
21 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
23 |
20 22
|
sylbid |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
24 |
|
df-mp |
⊢ ·P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 ·Q 𝑧 ) } ) |
25 |
|
mulclnq |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 ·Q 𝑧 ) ∈ Q ) |
26 |
24 25
|
genpprecl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
27 |
26
|
exp4b |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ℎ ∈ 𝐵 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) ) ) |
28 |
27
|
com34 |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ℎ ∈ 𝐵 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) ) ) |
29 |
28
|
imp32 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
30 |
29
|
adantlr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
31 |
23 30
|
syld |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
33 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ℎ ∈ Q ) |
34 |
|
mulassnq |
⊢ ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = ( 𝑥 ·Q ( ( *Q ‘ ℎ ) ·Q ℎ ) ) |
35 |
|
mulcomnq |
⊢ ( ( *Q ‘ ℎ ) ·Q ℎ ) = ( ℎ ·Q ( *Q ‘ ℎ ) ) |
36 |
35 13
|
eqtrid |
⊢ ( ℎ ∈ Q → ( ( *Q ‘ ℎ ) ·Q ℎ ) = 1Q ) |
37 |
36
|
oveq2d |
⊢ ( ℎ ∈ Q → ( 𝑥 ·Q ( ( *Q ‘ ℎ ) ·Q ℎ ) ) = ( 𝑥 ·Q 1Q ) ) |
38 |
34 37
|
eqtrid |
⊢ ( ℎ ∈ Q → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = ( 𝑥 ·Q 1Q ) ) |
39 |
|
mulidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) |
40 |
38 39
|
sylan9eq |
⊢ ( ( ℎ ∈ Q ∧ 𝑥 ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = 𝑥 ) |
41 |
40
|
eleq1d |
⊢ ( ( ℎ ∈ Q ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
42 |
33 41
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
43 |
32 42
|
sylibd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |