| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  𝑔  ∈  Q ) | 
						
							| 2 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  →  ℎ  ∈  Q ) | 
						
							| 3 |  | recclnq | ⊢ ( ℎ  ∈  Q  →  ( *Q ‘ ℎ )  ∈  Q ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( *Q ‘ ℎ )  ∈  Q ) | 
						
							| 5 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 6 |  | ovex | ⊢ ( 𝑔  ·Q  ℎ )  ∈  V | 
						
							| 7 |  | ltmnq | ⊢ ( 𝑤  ∈  Q  →  ( 𝑦  <Q  𝑧  ↔  ( 𝑤  ·Q  𝑦 )  <Q  ( 𝑤  ·Q  𝑧 ) ) ) | 
						
							| 8 |  | fvex | ⊢ ( *Q ‘ ℎ )  ∈  V | 
						
							| 9 |  | mulcomnq | ⊢ ( 𝑦  ·Q  𝑧 )  =  ( 𝑧  ·Q  𝑦 ) | 
						
							| 10 | 5 6 7 8 9 | caovord2 | ⊢ ( ( *Q ‘ ℎ )  ∈  Q  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  ↔  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  ( ( 𝑔  ·Q  ℎ )  ·Q  ( *Q ‘ ℎ ) ) ) ) | 
						
							| 11 | 4 10 | syl | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  ↔  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  ( ( 𝑔  ·Q  ℎ )  ·Q  ( *Q ‘ ℎ ) ) ) ) | 
						
							| 12 |  | mulassnq | ⊢ ( ( 𝑔  ·Q  ℎ )  ·Q  ( *Q ‘ ℎ ) )  =  ( 𝑔  ·Q  ( ℎ  ·Q  ( *Q ‘ ℎ ) ) ) | 
						
							| 13 |  | recidnq | ⊢ ( ℎ  ∈  Q  →  ( ℎ  ·Q  ( *Q ‘ ℎ ) )  =  1Q ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ℎ  ∈  Q  →  ( 𝑔  ·Q  ( ℎ  ·Q  ( *Q ‘ ℎ ) ) )  =  ( 𝑔  ·Q  1Q ) ) | 
						
							| 15 | 12 14 | eqtrid | ⊢ ( ℎ  ∈  Q  →  ( ( 𝑔  ·Q  ℎ )  ·Q  ( *Q ‘ ℎ ) )  =  ( 𝑔  ·Q  1Q ) ) | 
						
							| 16 |  | mulidnq | ⊢ ( 𝑔  ∈  Q  →  ( 𝑔  ·Q  1Q )  =  𝑔 ) | 
						
							| 17 | 15 16 | sylan9eqr | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( ( 𝑔  ·Q  ℎ )  ·Q  ( *Q ‘ ℎ ) )  =  𝑔 ) | 
						
							| 18 | 17 | breq2d | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  ( ( 𝑔  ·Q  ℎ )  ·Q  ( *Q ‘ ℎ ) )  ↔  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  𝑔 ) ) | 
						
							| 19 | 11 18 | bitrd | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  ↔  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  𝑔 ) ) | 
						
							| 20 | 1 2 19 | syl2an | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  ↔  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  𝑔 ) ) | 
						
							| 21 |  | prcdnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  𝑔  →  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  <Q  𝑔  →  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴 ) ) | 
						
							| 23 | 20 22 | sylbid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  →  ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴 ) ) | 
						
							| 24 |  | df-mp | ⊢  ·P   =  ( 𝑤  ∈  P ,  𝑣  ∈  P  ↦  { 𝑥  ∣  ∃ 𝑦  ∈  𝑤 ∃ 𝑧  ∈  𝑣 𝑥  =  ( 𝑦  ·Q  𝑧 ) } ) | 
						
							| 25 |  | mulclnq | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑦  ·Q  𝑧 )  ∈  Q ) | 
						
							| 26 | 24 25 | genpprecl | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴  ∧  ℎ  ∈  𝐵 )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 27 | 26 | exp4b | ⊢ ( 𝐴  ∈  P  →  ( 𝐵  ∈  P  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴  →  ( ℎ  ∈  𝐵  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 ) ) ) ) ) | 
						
							| 28 | 27 | com34 | ⊢ ( 𝐴  ∈  P  →  ( 𝐵  ∈  P  →  ( ℎ  ∈  𝐵  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 ) ) ) ) ) | 
						
							| 29 | 28 | imp32 | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ∈  𝐴  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 31 | 23 30 | syld | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 33 | 2 | adantl | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ℎ  ∈  Q ) | 
						
							| 34 |  | mulassnq | ⊢ ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  =  ( 𝑥  ·Q  ( ( *Q ‘ ℎ )  ·Q  ℎ ) ) | 
						
							| 35 |  | mulcomnq | ⊢ ( ( *Q ‘ ℎ )  ·Q  ℎ )  =  ( ℎ  ·Q  ( *Q ‘ ℎ ) ) | 
						
							| 36 | 35 13 | eqtrid | ⊢ ( ℎ  ∈  Q  →  ( ( *Q ‘ ℎ )  ·Q  ℎ )  =  1Q ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ℎ  ∈  Q  →  ( 𝑥  ·Q  ( ( *Q ‘ ℎ )  ·Q  ℎ ) )  =  ( 𝑥  ·Q  1Q ) ) | 
						
							| 38 | 34 37 | eqtrid | ⊢ ( ℎ  ∈  Q  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  =  ( 𝑥  ·Q  1Q ) ) | 
						
							| 39 |  | mulidnq | ⊢ ( 𝑥  ∈  Q  →  ( 𝑥  ·Q  1Q )  =  𝑥 ) | 
						
							| 40 | 38 39 | sylan9eq | ⊢ ( ( ℎ  ∈  Q  ∧  𝑥  ∈  Q )  →  ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  =  𝑥 ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( ( ℎ  ∈  Q  ∧  𝑥  ∈  Q )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 )  ↔  𝑥  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 42 | 33 41 | sylan | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ℎ ) )  ·Q  ℎ )  ∈  ( 𝐴  ·P  𝐵 )  ↔  𝑥  ∈  ( 𝐴  ·P  𝐵 ) ) ) | 
						
							| 43 | 32 42 | sylibd | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  ·Q  ℎ )  →  𝑥  ∈  ( 𝐴  ·P  𝐵 ) ) ) |