Metamath Proof Explorer


Theorem mulcmpblnr

Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion mulcmpblnr ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ⟨ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ⟩ ~R ⟨ ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 mulcmpblnrlem ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) )
2 mulclpr ( ( 𝐷P𝐹P ) → ( 𝐷 ·P 𝐹 ) ∈ P )
3 2 ad2ant2lr ( ( ( 𝐶P𝐷P ) ∧ ( 𝐹P𝐺P ) ) → ( 𝐷 ·P 𝐹 ) ∈ P )
4 3 ad2ant2lr ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( 𝐷 ·P 𝐹 ) ∈ P )
5 simplll ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝐴P )
6 simprll ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝐹P )
7 mulclpr ( ( 𝐴P𝐹P ) → ( 𝐴 ·P 𝐹 ) ∈ P )
8 5 6 7 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( 𝐴 ·P 𝐹 ) ∈ P )
9 simpllr ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝐵P )
10 simprlr ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝐺P )
11 mulclpr ( ( 𝐵P𝐺P ) → ( 𝐵 ·P 𝐺 ) ∈ P )
12 9 10 11 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( 𝐵 ·P 𝐺 ) ∈ P )
13 addclpr ( ( ( 𝐴 ·P 𝐹 ) ∈ P ∧ ( 𝐵 ·P 𝐺 ) ∈ P ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P )
14 8 12 13 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P )
15 simplrl ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝐶P )
16 simprrr ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝑆P )
17 mulclpr ( ( 𝐶P𝑆P ) → ( 𝐶 ·P 𝑆 ) ∈ P )
18 15 16 17 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( 𝐶 ·P 𝑆 ) ∈ P )
19 simplrr ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝐷P )
20 simprrl ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → 𝑅P )
21 mulclpr ( ( 𝐷P𝑅P ) → ( 𝐷 ·P 𝑅 ) ∈ P )
22 19 20 21 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( 𝐷 ·P 𝑅 ) ∈ P )
23 addclpr ( ( ( 𝐶 ·P 𝑆 ) ∈ P ∧ ( 𝐷 ·P 𝑅 ) ∈ P ) → ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P )
24 18 22 23 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P )
25 addclpr ( ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ∧ ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P )
26 14 24 25 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P )
27 addcanpr ( ( ( 𝐷 ·P 𝐹 ) ∈ P ∧ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) )
28 4 26 27 syl2anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) )
29 1 28 syl5 ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) )
30 mulclpr ( ( 𝐴P𝐺P ) → ( 𝐴 ·P 𝐺 ) ∈ P )
31 mulclpr ( ( 𝐵P𝐹P ) → ( 𝐵 ·P 𝐹 ) ∈ P )
32 addclpr ( ( ( 𝐴 ·P 𝐺 ) ∈ P ∧ ( 𝐵 ·P 𝐹 ) ∈ P ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P )
33 30 31 32 syl2an ( ( ( 𝐴P𝐺P ) ∧ ( 𝐵P𝐹P ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P )
34 5 10 9 6 33 syl22anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P )
35 mulclpr ( ( 𝐶P𝑅P ) → ( 𝐶 ·P 𝑅 ) ∈ P )
36 mulclpr ( ( 𝐷P𝑆P ) → ( 𝐷 ·P 𝑆 ) ∈ P )
37 addclpr ( ( ( 𝐶 ·P 𝑅 ) ∈ P ∧ ( 𝐷 ·P 𝑆 ) ∈ P ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P )
38 35 36 37 syl2an ( ( ( 𝐶P𝑅P ) ∧ ( 𝐷P𝑆P ) ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P )
39 15 20 19 16 38 syl22anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P )
40 enrbreq ( ( ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ∧ ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) ∧ ( ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ∧ ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) ) → ( ⟨ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ⟩ ~R ⟨ ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ⟩ ↔ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) )
41 14 34 39 24 40 syl22anc ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ⟨ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ⟩ ~R ⟨ ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ⟩ ↔ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) )
42 29 41 sylibrd ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ∧ ( ( 𝐹P𝐺P ) ∧ ( 𝑅P𝑆P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ⟨ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ⟩ ~R ⟨ ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ⟩ ) )