| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcmpblnrlem |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 2 |
|
mulclpr |
⊢ ( ( 𝐷 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐷 ·P 𝐹 ) ∈ P ) |
| 3 |
2
|
ad2ant2lr |
⊢ ( ( ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ∧ ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ) → ( 𝐷 ·P 𝐹 ) ∈ P ) |
| 4 |
3
|
ad2ant2lr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐷 ·P 𝐹 ) ∈ P ) |
| 5 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐴 ∈ P ) |
| 6 |
|
simprll |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐹 ∈ P ) |
| 7 |
|
mulclpr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐴 ·P 𝐹 ) ∈ P ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐴 ·P 𝐹 ) ∈ P ) |
| 9 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐵 ∈ P ) |
| 10 |
|
simprlr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐺 ∈ P ) |
| 11 |
|
mulclpr |
⊢ ( ( 𝐵 ∈ P ∧ 𝐺 ∈ P ) → ( 𝐵 ·P 𝐺 ) ∈ P ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐵 ·P 𝐺 ) ∈ P ) |
| 13 |
|
addclpr |
⊢ ( ( ( 𝐴 ·P 𝐹 ) ∈ P ∧ ( 𝐵 ·P 𝐺 ) ∈ P ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ) |
| 14 |
8 12 13
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ) |
| 15 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐶 ∈ P ) |
| 16 |
|
simprrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝑆 ∈ P ) |
| 17 |
|
mulclpr |
⊢ ( ( 𝐶 ∈ P ∧ 𝑆 ∈ P ) → ( 𝐶 ·P 𝑆 ) ∈ P ) |
| 18 |
15 16 17
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐶 ·P 𝑆 ) ∈ P ) |
| 19 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐷 ∈ P ) |
| 20 |
|
simprrl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝑅 ∈ P ) |
| 21 |
|
mulclpr |
⊢ ( ( 𝐷 ∈ P ∧ 𝑅 ∈ P ) → ( 𝐷 ·P 𝑅 ) ∈ P ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐷 ·P 𝑅 ) ∈ P ) |
| 23 |
|
addclpr |
⊢ ( ( ( 𝐶 ·P 𝑆 ) ∈ P ∧ ( 𝐷 ·P 𝑅 ) ∈ P ) → ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) |
| 24 |
18 22 23
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) |
| 25 |
|
addclpr |
⊢ ( ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ∧ ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P ) |
| 26 |
14 24 25
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P ) |
| 27 |
|
addcanpr |
⊢ ( ( ( 𝐷 ·P 𝐹 ) ∈ P ∧ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 28 |
4 26 27
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 29 |
1 28
|
syl5 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 30 |
|
mulclpr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐺 ∈ P ) → ( 𝐴 ·P 𝐺 ) ∈ P ) |
| 31 |
|
mulclpr |
⊢ ( ( 𝐵 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐵 ·P 𝐹 ) ∈ P ) |
| 32 |
|
addclpr |
⊢ ( ( ( 𝐴 ·P 𝐺 ) ∈ P ∧ ( 𝐵 ·P 𝐹 ) ∈ P ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) |
| 33 |
30 31 32
|
syl2an |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝐵 ∈ P ∧ 𝐹 ∈ P ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) |
| 34 |
5 10 9 6 33
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) |
| 35 |
|
mulclpr |
⊢ ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) → ( 𝐶 ·P 𝑅 ) ∈ P ) |
| 36 |
|
mulclpr |
⊢ ( ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) → ( 𝐷 ·P 𝑆 ) ∈ P ) |
| 37 |
|
addclpr |
⊢ ( ( ( 𝐶 ·P 𝑅 ) ∈ P ∧ ( 𝐷 ·P 𝑆 ) ∈ P ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ) |
| 38 |
35 36 37
|
syl2an |
⊢ ( ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) ∧ ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ) |
| 39 |
15 20 19 16 38
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ) |
| 40 |
|
enrbreq |
⊢ ( ( ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ∧ ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) ∧ ( ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ∧ ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) ) → ( 〈 ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) 〉 ~R 〈 ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) 〉 ↔ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 41 |
14 34 39 24 40
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 〈 ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) 〉 ~R 〈 ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) 〉 ↔ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 42 |
29 41
|
sylibrd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → 〈 ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) 〉 ~R 〈 ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) 〉 ) ) |