| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulcmpblnrlem | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) ) | 
						
							| 2 |  | mulclpr | ⊢ ( ( 𝐷  ∈  P  ∧  𝐹  ∈  P )  →  ( 𝐷  ·P  𝐹 )  ∈  P ) | 
						
							| 3 | 2 | ad2ant2lr | ⊢ ( ( ( 𝐶  ∈  P  ∧  𝐷  ∈  P )  ∧  ( 𝐹  ∈  P  ∧  𝐺  ∈  P ) )  →  ( 𝐷  ·P  𝐹 )  ∈  P ) | 
						
							| 4 | 3 | ad2ant2lr | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( 𝐷  ·P  𝐹 )  ∈  P ) | 
						
							| 5 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝐴  ∈  P ) | 
						
							| 6 |  | simprll | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝐹  ∈  P ) | 
						
							| 7 |  | mulclpr | ⊢ ( ( 𝐴  ∈  P  ∧  𝐹  ∈  P )  →  ( 𝐴  ·P  𝐹 )  ∈  P ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( 𝐴  ·P  𝐹 )  ∈  P ) | 
						
							| 9 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝐵  ∈  P ) | 
						
							| 10 |  | simprlr | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝐺  ∈  P ) | 
						
							| 11 |  | mulclpr | ⊢ ( ( 𝐵  ∈  P  ∧  𝐺  ∈  P )  →  ( 𝐵  ·P  𝐺 )  ∈  P ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( 𝐵  ·P  𝐺 )  ∈  P ) | 
						
							| 13 |  | addclpr | ⊢ ( ( ( 𝐴  ·P  𝐹 )  ∈  P  ∧  ( 𝐵  ·P  𝐺 )  ∈  P )  →  ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  ∈  P ) | 
						
							| 14 | 8 12 13 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  ∈  P ) | 
						
							| 15 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝐶  ∈  P ) | 
						
							| 16 |  | simprrr | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝑆  ∈  P ) | 
						
							| 17 |  | mulclpr | ⊢ ( ( 𝐶  ∈  P  ∧  𝑆  ∈  P )  →  ( 𝐶  ·P  𝑆 )  ∈  P ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( 𝐶  ·P  𝑆 )  ∈  P ) | 
						
							| 19 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝐷  ∈  P ) | 
						
							| 20 |  | simprrl | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  𝑅  ∈  P ) | 
						
							| 21 |  | mulclpr | ⊢ ( ( 𝐷  ∈  P  ∧  𝑅  ∈  P )  →  ( 𝐷  ·P  𝑅 )  ∈  P ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( 𝐷  ·P  𝑅 )  ∈  P ) | 
						
							| 23 |  | addclpr | ⊢ ( ( ( 𝐶  ·P  𝑆 )  ∈  P  ∧  ( 𝐷  ·P  𝑅 )  ∈  P )  →  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) )  ∈  P ) | 
						
							| 24 | 18 22 23 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) )  ∈  P ) | 
						
							| 25 |  | addclpr | ⊢ ( ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  ∈  P  ∧  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) )  ∈  P )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  ∈  P ) | 
						
							| 26 | 14 24 25 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  ∈  P ) | 
						
							| 27 |  | addcanpr | ⊢ ( ( ( 𝐷  ·P  𝐹 )  ∈  P  ∧  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  ∈  P )  →  ( ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  =  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) ) | 
						
							| 28 | 4 26 27 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  =  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) ) | 
						
							| 29 | 1 28 | syl5 | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  =  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) ) | 
						
							| 30 |  | mulclpr | ⊢ ( ( 𝐴  ∈  P  ∧  𝐺  ∈  P )  →  ( 𝐴  ·P  𝐺 )  ∈  P ) | 
						
							| 31 |  | mulclpr | ⊢ ( ( 𝐵  ∈  P  ∧  𝐹  ∈  P )  →  ( 𝐵  ·P  𝐹 )  ∈  P ) | 
						
							| 32 |  | addclpr | ⊢ ( ( ( 𝐴  ·P  𝐺 )  ∈  P  ∧  ( 𝐵  ·P  𝐹 )  ∈  P )  →  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  ∈  P ) | 
						
							| 33 | 30 31 32 | syl2an | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝐵  ∈  P  ∧  𝐹  ∈  P ) )  →  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  ∈  P ) | 
						
							| 34 | 5 10 9 6 33 | syl22anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  ∈  P ) | 
						
							| 35 |  | mulclpr | ⊢ ( ( 𝐶  ∈  P  ∧  𝑅  ∈  P )  →  ( 𝐶  ·P  𝑅 )  ∈  P ) | 
						
							| 36 |  | mulclpr | ⊢ ( ( 𝐷  ∈  P  ∧  𝑆  ∈  P )  →  ( 𝐷  ·P  𝑆 )  ∈  P ) | 
						
							| 37 |  | addclpr | ⊢ ( ( ( 𝐶  ·P  𝑅 )  ∈  P  ∧  ( 𝐷  ·P  𝑆 )  ∈  P )  →  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) )  ∈  P ) | 
						
							| 38 | 35 36 37 | syl2an | ⊢ ( ( ( 𝐶  ∈  P  ∧  𝑅  ∈  P )  ∧  ( 𝐷  ∈  P  ∧  𝑆  ∈  P ) )  →  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) )  ∈  P ) | 
						
							| 39 | 15 20 19 16 38 | syl22anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) )  ∈  P ) | 
						
							| 40 |  | enrbreq | ⊢ ( ( ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  ∈  P  ∧  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  ∈  P )  ∧  ( ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) )  ∈  P  ∧  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) )  ∈  P ) )  →  ( 〈 ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) ) ,  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) ) 〉  ~R  〈 ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ,  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) 〉  ↔  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  =  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) ) | 
						
							| 41 | 14 34 39 24 40 | syl22anc | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( 〈 ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) ) ,  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) ) 〉  ~R  〈 ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ,  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) 〉  ↔  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) )  =  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) ) | 
						
							| 42 | 29 41 | sylibrd | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  ∧  ( 𝐶  ∈  P  ∧  𝐷  ∈  P ) )  ∧  ( ( 𝐹  ∈  P  ∧  𝐺  ∈  P )  ∧  ( 𝑅  ∈  P  ∧  𝑆  ∈  P ) ) )  →  ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  〈 ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) ) ,  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) ) 〉  ~R  〈 ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ,  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) 〉 ) ) |