| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) ) |
| 2 |
|
distrpr |
⊢ ( 𝐹 ·P ( 𝐴 +P 𝐷 ) ) = ( ( 𝐹 ·P 𝐴 ) +P ( 𝐹 ·P 𝐷 ) ) |
| 3 |
|
mulcompr |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( 𝐹 ·P ( 𝐴 +P 𝐷 ) ) |
| 4 |
|
mulcompr |
⊢ ( 𝐴 ·P 𝐹 ) = ( 𝐹 ·P 𝐴 ) |
| 5 |
|
mulcompr |
⊢ ( 𝐷 ·P 𝐹 ) = ( 𝐹 ·P 𝐷 ) |
| 6 |
4 5
|
oveq12i |
⊢ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐹 ·P 𝐴 ) +P ( 𝐹 ·P 𝐷 ) ) |
| 7 |
2 3 6
|
3eqtr4i |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) |
| 8 |
|
distrpr |
⊢ ( 𝐹 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐹 ·P 𝐵 ) +P ( 𝐹 ·P 𝐶 ) ) |
| 9 |
|
mulcompr |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) = ( 𝐹 ·P ( 𝐵 +P 𝐶 ) ) |
| 10 |
|
mulcompr |
⊢ ( 𝐵 ·P 𝐹 ) = ( 𝐹 ·P 𝐵 ) |
| 11 |
|
mulcompr |
⊢ ( 𝐶 ·P 𝐹 ) = ( 𝐹 ·P 𝐶 ) |
| 12 |
10 11
|
oveq12i |
⊢ ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) = ( ( 𝐹 ·P 𝐵 ) +P ( 𝐹 ·P 𝐶 ) ) |
| 13 |
8 9 12
|
3eqtr4i |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) = ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) |
| 14 |
1 7 13
|
3eqtr3g |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) ) |
| 15 |
14
|
oveq1d |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) ) |
| 16 |
|
addasspr |
⊢ ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( 𝐶 ·P ( 𝐹 +P 𝑆 ) ) = ( 𝐶 ·P ( 𝐺 +P 𝑅 ) ) ) |
| 18 |
|
distrpr |
⊢ ( 𝐶 ·P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) |
| 19 |
|
distrpr |
⊢ ( 𝐶 ·P ( 𝐺 +P 𝑅 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) |
| 20 |
17 18 19
|
3eqtr3g |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 22 |
16 21
|
eqtrid |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 23 |
15 22
|
sylan9eq |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 24 |
|
ovex |
⊢ ( 𝐴 ·P 𝐹 ) ∈ V |
| 25 |
|
ovex |
⊢ ( 𝐷 ·P 𝐹 ) ∈ V |
| 26 |
|
ovex |
⊢ ( 𝐶 ·P 𝑆 ) ∈ V |
| 27 |
|
addcompr |
⊢ ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 ) |
| 28 |
|
addasspr |
⊢ ( ( 𝑥 +P 𝑦 ) +P 𝑧 ) = ( 𝑥 +P ( 𝑦 +P 𝑧 ) ) |
| 29 |
24 25 26 27 28
|
caov32 |
⊢ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) |
| 30 |
|
ovex |
⊢ ( 𝐵 ·P 𝐹 ) ∈ V |
| 31 |
|
ovex |
⊢ ( 𝐶 ·P 𝐺 ) ∈ V |
| 32 |
|
ovex |
⊢ ( 𝐶 ·P 𝑅 ) ∈ V |
| 33 |
30 31 32 27 28
|
caov12 |
⊢ ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) |
| 34 |
23 29 33
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 35 |
34
|
oveq2d |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
| 36 |
|
oveq2 |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( 𝐷 ·P ( 𝐹 +P 𝑆 ) ) = ( 𝐷 ·P ( 𝐺 +P 𝑅 ) ) ) |
| 37 |
|
distrpr |
⊢ ( 𝐷 ·P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) |
| 38 |
|
distrpr |
⊢ ( 𝐷 ·P ( 𝐺 +P 𝑅 ) ) = ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) |
| 39 |
36 37 38
|
3eqtr3g |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) = ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
| 41 |
|
addasspr |
⊢ ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 42 |
40 41
|
eqtr4di |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 43 |
|
oveq1 |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) ) |
| 44 |
|
distrpr |
⊢ ( 𝐺 ·P ( 𝐴 +P 𝐷 ) ) = ( ( 𝐺 ·P 𝐴 ) +P ( 𝐺 ·P 𝐷 ) ) |
| 45 |
|
mulcompr |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( 𝐺 ·P ( 𝐴 +P 𝐷 ) ) |
| 46 |
|
mulcompr |
⊢ ( 𝐴 ·P 𝐺 ) = ( 𝐺 ·P 𝐴 ) |
| 47 |
|
mulcompr |
⊢ ( 𝐷 ·P 𝐺 ) = ( 𝐺 ·P 𝐷 ) |
| 48 |
46 47
|
oveq12i |
⊢ ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) = ( ( 𝐺 ·P 𝐴 ) +P ( 𝐺 ·P 𝐷 ) ) |
| 49 |
44 45 48
|
3eqtr4i |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) |
| 50 |
|
distrpr |
⊢ ( 𝐺 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐺 ·P 𝐵 ) +P ( 𝐺 ·P 𝐶 ) ) |
| 51 |
|
mulcompr |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) = ( 𝐺 ·P ( 𝐵 +P 𝐶 ) ) |
| 52 |
|
mulcompr |
⊢ ( 𝐵 ·P 𝐺 ) = ( 𝐺 ·P 𝐵 ) |
| 53 |
|
mulcompr |
⊢ ( 𝐶 ·P 𝐺 ) = ( 𝐺 ·P 𝐶 ) |
| 54 |
52 53
|
oveq12i |
⊢ ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) = ( ( 𝐺 ·P 𝐵 ) +P ( 𝐺 ·P 𝐶 ) ) |
| 55 |
50 51 54
|
3eqtr4i |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) = ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) |
| 56 |
43 49 55
|
3eqtr3g |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) = ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) ) |
| 57 |
56
|
oveq1d |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 58 |
42 57
|
sylan9eqr |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 59 |
|
ovex |
⊢ ( 𝐴 ·P 𝐺 ) ∈ V |
| 60 |
|
ovex |
⊢ ( 𝐷 ·P 𝑆 ) ∈ V |
| 61 |
59 25 60 27 28
|
caov12 |
⊢ ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) |
| 62 |
|
ovex |
⊢ ( 𝐵 ·P 𝐺 ) ∈ V |
| 63 |
|
ovex |
⊢ ( 𝐷 ·P 𝑅 ) ∈ V |
| 64 |
62 31 63 27 28
|
caov32 |
⊢ ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) |
| 65 |
58 61 64
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) ) |
| 66 |
65
|
oveq1d |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 67 |
|
addasspr |
⊢ ( ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 68 |
66 67
|
eqtrdi |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
| 69 |
35 68
|
eqtr4d |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 70 |
|
ovex |
⊢ ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ V |
| 71 |
|
ovex |
⊢ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ∈ V |
| 72 |
70 71 25 27 28
|
caov13 |
⊢ ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
| 73 |
|
addasspr |
⊢ ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 74 |
69 72 73
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
| 75 |
24 26 62 27 28 63
|
caov4 |
⊢ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 76 |
75
|
oveq2i |
⊢ ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
| 77 |
59 60 30 27 28 32
|
caov42 |
⊢ ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) |
| 78 |
77
|
oveq2i |
⊢ ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) |
| 79 |
74 76 78
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |