Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) ) |
2 |
|
distrpr |
⊢ ( 𝐹 ·P ( 𝐴 +P 𝐷 ) ) = ( ( 𝐹 ·P 𝐴 ) +P ( 𝐹 ·P 𝐷 ) ) |
3 |
|
mulcompr |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( 𝐹 ·P ( 𝐴 +P 𝐷 ) ) |
4 |
|
mulcompr |
⊢ ( 𝐴 ·P 𝐹 ) = ( 𝐹 ·P 𝐴 ) |
5 |
|
mulcompr |
⊢ ( 𝐷 ·P 𝐹 ) = ( 𝐹 ·P 𝐷 ) |
6 |
4 5
|
oveq12i |
⊢ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐹 ·P 𝐴 ) +P ( 𝐹 ·P 𝐷 ) ) |
7 |
2 3 6
|
3eqtr4i |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) |
8 |
|
distrpr |
⊢ ( 𝐹 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐹 ·P 𝐵 ) +P ( 𝐹 ·P 𝐶 ) ) |
9 |
|
mulcompr |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) = ( 𝐹 ·P ( 𝐵 +P 𝐶 ) ) |
10 |
|
mulcompr |
⊢ ( 𝐵 ·P 𝐹 ) = ( 𝐹 ·P 𝐵 ) |
11 |
|
mulcompr |
⊢ ( 𝐶 ·P 𝐹 ) = ( 𝐹 ·P 𝐶 ) |
12 |
10 11
|
oveq12i |
⊢ ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) = ( ( 𝐹 ·P 𝐵 ) +P ( 𝐹 ·P 𝐶 ) ) |
13 |
8 9 12
|
3eqtr4i |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) = ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) |
14 |
1 7 13
|
3eqtr3g |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) ) |
15 |
14
|
oveq1d |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) ) |
16 |
|
addasspr |
⊢ ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ) |
17 |
|
oveq2 |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( 𝐶 ·P ( 𝐹 +P 𝑆 ) ) = ( 𝐶 ·P ( 𝐺 +P 𝑅 ) ) ) |
18 |
|
distrpr |
⊢ ( 𝐶 ·P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) |
19 |
|
distrpr |
⊢ ( 𝐶 ·P ( 𝐺 +P 𝑅 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) |
20 |
17 18 19
|
3eqtr3g |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
22 |
16 21
|
eqtrid |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
23 |
15 22
|
sylan9eq |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
24 |
|
ovex |
⊢ ( 𝐴 ·P 𝐹 ) ∈ V |
25 |
|
ovex |
⊢ ( 𝐷 ·P 𝐹 ) ∈ V |
26 |
|
ovex |
⊢ ( 𝐶 ·P 𝑆 ) ∈ V |
27 |
|
addcompr |
⊢ ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 ) |
28 |
|
addasspr |
⊢ ( ( 𝑥 +P 𝑦 ) +P 𝑧 ) = ( 𝑥 +P ( 𝑦 +P 𝑧 ) ) |
29 |
24 25 26 27 28
|
caov32 |
⊢ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) |
30 |
|
ovex |
⊢ ( 𝐵 ·P 𝐹 ) ∈ V |
31 |
|
ovex |
⊢ ( 𝐶 ·P 𝐺 ) ∈ V |
32 |
|
ovex |
⊢ ( 𝐶 ·P 𝑅 ) ∈ V |
33 |
30 31 32 27 28
|
caov12 |
⊢ ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) |
34 |
23 29 33
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
35 |
34
|
oveq2d |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
36 |
|
oveq2 |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( 𝐷 ·P ( 𝐹 +P 𝑆 ) ) = ( 𝐷 ·P ( 𝐺 +P 𝑅 ) ) ) |
37 |
|
distrpr |
⊢ ( 𝐷 ·P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) |
38 |
|
distrpr |
⊢ ( 𝐷 ·P ( 𝐺 +P 𝑅 ) ) = ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) |
39 |
36 37 38
|
3eqtr3g |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) = ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
41 |
|
addasspr |
⊢ ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
42 |
40 41
|
eqtr4di |
⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
43 |
|
oveq1 |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) ) |
44 |
|
distrpr |
⊢ ( 𝐺 ·P ( 𝐴 +P 𝐷 ) ) = ( ( 𝐺 ·P 𝐴 ) +P ( 𝐺 ·P 𝐷 ) ) |
45 |
|
mulcompr |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( 𝐺 ·P ( 𝐴 +P 𝐷 ) ) |
46 |
|
mulcompr |
⊢ ( 𝐴 ·P 𝐺 ) = ( 𝐺 ·P 𝐴 ) |
47 |
|
mulcompr |
⊢ ( 𝐷 ·P 𝐺 ) = ( 𝐺 ·P 𝐷 ) |
48 |
46 47
|
oveq12i |
⊢ ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) = ( ( 𝐺 ·P 𝐴 ) +P ( 𝐺 ·P 𝐷 ) ) |
49 |
44 45 48
|
3eqtr4i |
⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) |
50 |
|
distrpr |
⊢ ( 𝐺 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐺 ·P 𝐵 ) +P ( 𝐺 ·P 𝐶 ) ) |
51 |
|
mulcompr |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) = ( 𝐺 ·P ( 𝐵 +P 𝐶 ) ) |
52 |
|
mulcompr |
⊢ ( 𝐵 ·P 𝐺 ) = ( 𝐺 ·P 𝐵 ) |
53 |
|
mulcompr |
⊢ ( 𝐶 ·P 𝐺 ) = ( 𝐺 ·P 𝐶 ) |
54 |
52 53
|
oveq12i |
⊢ ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) = ( ( 𝐺 ·P 𝐵 ) +P ( 𝐺 ·P 𝐶 ) ) |
55 |
50 51 54
|
3eqtr4i |
⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) = ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) |
56 |
43 49 55
|
3eqtr3g |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) = ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) ) |
57 |
56
|
oveq1d |
⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
58 |
42 57
|
sylan9eqr |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
59 |
|
ovex |
⊢ ( 𝐴 ·P 𝐺 ) ∈ V |
60 |
|
ovex |
⊢ ( 𝐷 ·P 𝑆 ) ∈ V |
61 |
59 25 60 27 28
|
caov12 |
⊢ ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) |
62 |
|
ovex |
⊢ ( 𝐵 ·P 𝐺 ) ∈ V |
63 |
|
ovex |
⊢ ( 𝐷 ·P 𝑅 ) ∈ V |
64 |
62 31 63 27 28
|
caov32 |
⊢ ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) |
65 |
58 61 64
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) ) |
66 |
65
|
oveq1d |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
67 |
|
addasspr |
⊢ ( ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
68 |
66 67
|
eqtrdi |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
69 |
35 68
|
eqtr4d |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
70 |
|
ovex |
⊢ ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ V |
71 |
|
ovex |
⊢ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ∈ V |
72 |
70 71 25 27 28
|
caov13 |
⊢ ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
73 |
|
addasspr |
⊢ ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
74 |
69 72 73
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
75 |
24 26 62 27 28 63
|
caov4 |
⊢ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
76 |
75
|
oveq2i |
⊢ ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
77 |
59 60 30 27 28 32
|
caov42 |
⊢ ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) |
78 |
77
|
oveq2i |
⊢ ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) |
79 |
74 76 78
|
3eqtr3g |
⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |