Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
⊢ 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ∈ V |
2 |
|
oveq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ·R 𝑢 ) = ( 𝐴 ·R 𝑢 ) ) |
3 |
|
oveq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ·R 𝑓 ) = ( 𝐵 ·R 𝑓 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑣 = 𝐵 → ( -1R ·R ( 𝑣 ·R 𝑓 ) ) = ( -1R ·R ( 𝐵 ·R 𝑓 ) ) ) |
5 |
2 4
|
oveqan12d |
⊢ ( ( 𝑤 = 𝐴 ∧ 𝑣 = 𝐵 ) → ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) = ( ( 𝐴 ·R 𝑢 ) +R ( -1R ·R ( 𝐵 ·R 𝑓 ) ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ·R 𝑢 ) = ( 𝐵 ·R 𝑢 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ·R 𝑓 ) = ( 𝐴 ·R 𝑓 ) ) |
8 |
6 7
|
oveqan12rd |
⊢ ( ( 𝑤 = 𝐴 ∧ 𝑣 = 𝐵 ) → ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) = ( ( 𝐵 ·R 𝑢 ) +R ( 𝐴 ·R 𝑓 ) ) ) |
9 |
5 8
|
opeq12d |
⊢ ( ( 𝑤 = 𝐴 ∧ 𝑣 = 𝐵 ) → 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 = 〈 ( ( 𝐴 ·R 𝑢 ) +R ( -1R ·R ( 𝐵 ·R 𝑓 ) ) ) , ( ( 𝐵 ·R 𝑢 ) +R ( 𝐴 ·R 𝑓 ) ) 〉 ) |
10 |
|
oveq2 |
⊢ ( 𝑢 = 𝐶 → ( 𝐴 ·R 𝑢 ) = ( 𝐴 ·R 𝐶 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑓 = 𝐷 → ( 𝐵 ·R 𝑓 ) = ( 𝐵 ·R 𝐷 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑓 = 𝐷 → ( -1R ·R ( 𝐵 ·R 𝑓 ) ) = ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) |
13 |
10 12
|
oveqan12d |
⊢ ( ( 𝑢 = 𝐶 ∧ 𝑓 = 𝐷 ) → ( ( 𝐴 ·R 𝑢 ) +R ( -1R ·R ( 𝐵 ·R 𝑓 ) ) ) = ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑢 = 𝐶 → ( 𝐵 ·R 𝑢 ) = ( 𝐵 ·R 𝐶 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑓 = 𝐷 → ( 𝐴 ·R 𝑓 ) = ( 𝐴 ·R 𝐷 ) ) |
16 |
14 15
|
oveqan12d |
⊢ ( ( 𝑢 = 𝐶 ∧ 𝑓 = 𝐷 ) → ( ( 𝐵 ·R 𝑢 ) +R ( 𝐴 ·R 𝑓 ) ) = ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) ) |
17 |
13 16
|
opeq12d |
⊢ ( ( 𝑢 = 𝐶 ∧ 𝑓 = 𝐷 ) → 〈 ( ( 𝐴 ·R 𝑢 ) +R ( -1R ·R ( 𝐵 ·R 𝑓 ) ) ) , ( ( 𝐵 ·R 𝑢 ) +R ( 𝐴 ·R 𝑓 ) ) 〉 = 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ) |
18 |
9 17
|
sylan9eq |
⊢ ( ( ( 𝑤 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑢 = 𝐶 ∧ 𝑓 = 𝐷 ) ) → 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 = 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ) |
19 |
|
df-mul |
⊢ · = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } |
20 |
|
df-c |
⊢ ℂ = ( R × R ) |
21 |
20
|
eleq2i |
⊢ ( 𝑥 ∈ ℂ ↔ 𝑥 ∈ ( R × R ) ) |
22 |
20
|
eleq2i |
⊢ ( 𝑦 ∈ ℂ ↔ 𝑦 ∈ ( R × R ) ) |
23 |
21 22
|
anbi12i |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ↔ ( 𝑥 ∈ ( R × R ) ∧ 𝑦 ∈ ( R × R ) ) ) |
24 |
23
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ↔ ( ( 𝑥 ∈ ( R × R ) ∧ 𝑦 ∈ ( R × R ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) ) |
25 |
24
|
oprabbii |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( R × R ) ∧ 𝑦 ∈ ( R × R ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } |
26 |
19 25
|
eqtri |
⊢ · = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( R × R ) ∧ 𝑦 ∈ ( R × R ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 〈 ( ( 𝑤 ·R 𝑢 ) +R ( -1R ·R ( 𝑣 ·R 𝑓 ) ) ) , ( ( 𝑣 ·R 𝑢 ) +R ( 𝑤 ·R 𝑓 ) ) 〉 ) ) } |
27 |
1 18 26
|
ov3 |
⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 𝐶 ∈ R ∧ 𝐷 ∈ R ) ) → ( 〈 𝐴 , 𝐵 〉 · 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ) |