Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecid , which shows that the coset of the converse membership relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs .
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi . (Contributed by NM, 13-Aug-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mulcnsrec | ⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 𝐶 ∈ R ∧ 𝐷 ∈ R ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ◡ E · [ 〈 𝐶 , 𝐷 〉 ] ◡ E ) = [ 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ] ◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcnsr | ⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 𝐶 ∈ R ∧ 𝐷 ∈ R ) ) → ( 〈 𝐴 , 𝐵 〉 · 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ) | |
2 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
3 | 2 | ecid | ⊢ [ 〈 𝐴 , 𝐵 〉 ] ◡ E = 〈 𝐴 , 𝐵 〉 |
4 | opex | ⊢ 〈 𝐶 , 𝐷 〉 ∈ V | |
5 | 4 | ecid | ⊢ [ 〈 𝐶 , 𝐷 〉 ] ◡ E = 〈 𝐶 , 𝐷 〉 |
6 | 3 5 | oveq12i | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ◡ E · [ 〈 𝐶 , 𝐷 〉 ] ◡ E ) = ( 〈 𝐴 , 𝐵 〉 · 〈 𝐶 , 𝐷 〉 ) |
7 | opex | ⊢ 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ∈ V | |
8 | 7 | ecid | ⊢ [ 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ] ◡ E = 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 |
9 | 1 6 8 | 3eqtr4g | ⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 𝐶 ∈ R ∧ 𝐷 ∈ R ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ◡ E · [ 〈 𝐶 , 𝐷 〉 ] ◡ E ) = [ 〈 ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) 〉 ] ◡ E ) |