Metamath Proof Explorer
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994)
|
|
Ref |
Expression |
|
Hypotheses |
axi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
axi.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
mulcomi |
⊢ ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
axi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
axi.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) |