Metamath Proof Explorer


Theorem mulcomli

Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypotheses axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
mulcomli.3 ( 𝐴 · 𝐵 ) = 𝐶
Assertion mulcomli ( 𝐵 · 𝐴 ) = 𝐶

Proof

Step Hyp Ref Expression
1 axi.1 𝐴 ∈ ℂ
2 axi.2 𝐵 ∈ ℂ
3 mulcomli.3 ( 𝐴 · 𝐵 ) = 𝐶
4 2 1 mulcomi ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 )
5 4 3 eqtri ( 𝐵 · 𝐴 ) = 𝐶