Step |
Hyp |
Ref |
Expression |
1 |
|
mulcompq |
⊢ ( 𝐴 ·pQ 𝐵 ) = ( 𝐵 ·pQ 𝐴 ) |
2 |
1
|
fveq2i |
⊢ ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) = ( [Q] ‘ ( 𝐵 ·pQ 𝐴 ) ) |
3 |
|
mulpqnq |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 ·Q 𝐵 ) = ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) ) |
4 |
|
mulpqnq |
⊢ ( ( 𝐵 ∈ Q ∧ 𝐴 ∈ Q ) → ( 𝐵 ·Q 𝐴 ) = ( [Q] ‘ ( 𝐵 ·pQ 𝐴 ) ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐵 ·Q 𝐴 ) = ( [Q] ‘ ( 𝐵 ·pQ 𝐴 ) ) ) |
6 |
2 3 5
|
3eqtr4a |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 ·Q 𝐵 ) = ( 𝐵 ·Q 𝐴 ) ) |
7 |
|
mulnqf |
⊢ ·Q : ( Q × Q ) ⟶ Q |
8 |
7
|
fdmi |
⊢ dom ·Q = ( Q × Q ) |
9 |
8
|
ndmovcom |
⊢ ( ¬ ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 ·Q 𝐵 ) = ( 𝐵 ·Q 𝐴 ) ) |
10 |
6 9
|
pm2.61i |
⊢ ( 𝐴 ·Q 𝐵 ) = ( 𝐵 ·Q 𝐴 ) |