| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
| 2 |
|
pinn |
⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) |
| 3 |
|
nnmcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = ( 𝐵 ·o 𝐴 ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) = ( 𝐵 ·o 𝐴 ) ) |
| 5 |
|
mulpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) |
| 6 |
|
mulpiord |
⊢ ( ( 𝐵 ∈ N ∧ 𝐴 ∈ N ) → ( 𝐵 ·N 𝐴 ) = ( 𝐵 ·o 𝐴 ) ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐵 ·N 𝐴 ) = ( 𝐵 ·o 𝐴 ) ) |
| 8 |
4 5 7
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐵 ·N 𝐴 ) ) |
| 9 |
|
dmmulpi |
⊢ dom ·N = ( N × N ) |
| 10 |
9
|
ndmovcom |
⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐵 ·N 𝐴 ) ) |
| 11 |
8 10
|
pm2.61i |
⊢ ( 𝐴 ·N 𝐵 ) = ( 𝐵 ·N 𝐴 ) |