Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
2 |
|
mulsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) |
3 |
|
mulsrpr |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R ·R [ 〈 𝑥 , 𝑦 〉 ] ~R ) = [ 〈 ( ( 𝑧 ·P 𝑥 ) +P ( 𝑤 ·P 𝑦 ) ) , ( ( 𝑧 ·P 𝑦 ) +P ( 𝑤 ·P 𝑥 ) ) 〉 ] ~R ) |
4 |
|
mulcompr |
⊢ ( 𝑥 ·P 𝑧 ) = ( 𝑧 ·P 𝑥 ) |
5 |
|
mulcompr |
⊢ ( 𝑦 ·P 𝑤 ) = ( 𝑤 ·P 𝑦 ) |
6 |
4 5
|
oveq12i |
⊢ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) = ( ( 𝑧 ·P 𝑥 ) +P ( 𝑤 ·P 𝑦 ) ) |
7 |
|
mulcompr |
⊢ ( 𝑥 ·P 𝑤 ) = ( 𝑤 ·P 𝑥 ) |
8 |
|
mulcompr |
⊢ ( 𝑦 ·P 𝑧 ) = ( 𝑧 ·P 𝑦 ) |
9 |
7 8
|
oveq12i |
⊢ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) = ( ( 𝑤 ·P 𝑥 ) +P ( 𝑧 ·P 𝑦 ) ) |
10 |
|
addcompr |
⊢ ( ( 𝑤 ·P 𝑥 ) +P ( 𝑧 ·P 𝑦 ) ) = ( ( 𝑧 ·P 𝑦 ) +P ( 𝑤 ·P 𝑥 ) ) |
11 |
9 10
|
eqtri |
⊢ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) = ( ( 𝑧 ·P 𝑦 ) +P ( 𝑤 ·P 𝑥 ) ) |
12 |
1 2 3 6 11
|
ecovcom |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) = ( 𝐵 ·R 𝐴 ) ) |
13 |
|
dmmulsr |
⊢ dom ·R = ( R × R ) |
14 |
13
|
ndmovcom |
⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) = ( 𝐵 ·R 𝐴 ) ) |
15 |
12 14
|
pm2.61i |
⊢ ( 𝐴 ·R 𝐵 ) = ( 𝐵 ·R 𝐴 ) |