| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							muval | 
							⊢ ( 𝐴  ∈  ℕ  →  ( μ ‘ 𝐴 )  =  if ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ,  0 ,  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							iftrue | 
							⊢ ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴  →  if ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ,  0 ,  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  =  0 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan9eq | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( μ ‘ 𝐴 )  =  0 )  | 
						
						
							| 4 | 
							
								3
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( abs ‘ ( μ ‘ 𝐴 ) )  =  ( abs ‘ 0 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							abs0 | 
							⊢ ( abs ‘ 0 )  =  0  | 
						
						
							| 6 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqbrtri | 
							⊢ ( abs ‘ 0 )  ≤  1  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqbrtrdi | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( abs ‘ ( μ ‘ 𝐴 ) )  ≤  1 )  | 
						
						
							| 9 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴  →  if ( ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 ,  0 ,  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  =  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							sylan9eq | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ¬  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( μ ‘ 𝐴 )  =  ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ¬  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( abs ‘ ( μ ‘ 𝐴 ) )  =  ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							neg1cn | 
							⊢ - 1  ∈  ℂ  | 
						
						
							| 13 | 
							
								
							 | 
							prmdvdsfi | 
							⊢ ( 𝐴  ∈  ℕ  →  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 }  ∈  Fin )  | 
						
						
							| 14 | 
							
								
							 | 
							hashcl | 
							⊢ ( { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 }  ∈  Fin  →  ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } )  ∈  ℕ0 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ℕ  →  ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } )  ∈  ℕ0 )  | 
						
						
							| 16 | 
							
								
							 | 
							absexp | 
							⊢ ( ( - 1  ∈  ℂ  ∧  ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } )  ∈  ℕ0 )  →  ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  =  ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  | 
						
						
							| 17 | 
							
								12 15 16
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  ℕ  →  ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  =  ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 19 | 
							
								18
							 | 
							absnegi | 
							⊢ ( abs ‘ - 1 )  =  ( abs ‘ 1 )  | 
						
						
							| 20 | 
							
								
							 | 
							abs1 | 
							⊢ ( abs ‘ 1 )  =  1  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqtri | 
							⊢ ( abs ‘ - 1 )  =  1  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq1i | 
							⊢ ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) )  =  ( 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) )  | 
						
						
							| 23 | 
							
								15
							 | 
							nn0zd | 
							⊢ ( 𝐴  ∈  ℕ  →  ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } )  ∈  ℤ )  | 
						
						
							| 24 | 
							
								
							 | 
							1exp | 
							⊢ ( ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } )  ∈  ℤ  →  ( 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) )  =  1 )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ℕ  →  ( 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) )  =  1 )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							eqtrid | 
							⊢ ( 𝐴  ∈  ℕ  →  ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) )  =  1 )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							eqtrd | 
							⊢ ( 𝐴  ∈  ℕ  →  ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  =  1 )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ¬  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) ) )  =  1 )  | 
						
						
							| 29 | 
							
								11 28
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ¬  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( abs ‘ ( μ ‘ 𝐴 ) )  =  1 )  | 
						
						
							| 30 | 
							
								
							 | 
							1le1 | 
							⊢ 1  ≤  1  | 
						
						
							| 31 | 
							
								29 30
							 | 
							eqbrtrdi | 
							⊢ ( ( 𝐴  ∈  ℕ  ∧  ¬  ∃ 𝑝  ∈  ℙ ( 𝑝 ↑ 2 )  ∥  𝐴 )  →  ( abs ‘ ( μ ‘ 𝐴 ) )  ≤  1 )  | 
						
						
							| 32 | 
							
								8 31
							 | 
							pm2.61dan | 
							⊢ ( 𝐴  ∈  ℕ  →  ( abs ‘ ( μ ‘ 𝐴 ) )  ≤  1 )  |