Step |
Hyp |
Ref |
Expression |
1 |
|
muval |
⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
2 |
|
iftrue |
⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ) |
3 |
1 2
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℕ ∧ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = 0 ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) = ( abs ‘ 0 ) ) |
5 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
6 |
|
0le1 |
⊢ 0 ≤ 1 |
7 |
5 6
|
eqbrtri |
⊢ ( abs ‘ 0 ) ≤ 1 |
8 |
4 7
|
eqbrtrdi |
⊢ ( ( 𝐴 ∈ ℕ ∧ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) ≤ 1 ) |
9 |
|
iffalse |
⊢ ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
10 |
1 9
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) = ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
12 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
13 |
|
prmdvdsfi |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
14 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
16 |
|
absexp |
⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
17 |
12 15 16
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
18 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
19 |
18
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
20 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
21 |
19 20
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
22 |
21
|
oveq1i |
⊢ ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = ( 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) |
23 |
15
|
nn0zd |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℤ ) |
24 |
|
1exp |
⊢ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℤ → ( 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = 1 ) |
25 |
23 24
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = 1 ) |
26 |
22 25
|
syl5eq |
⊢ ( 𝐴 ∈ ℕ → ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = 1 ) |
27 |
17 26
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 1 ) |
28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 1 ) |
29 |
11 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) = 1 ) |
30 |
|
1le1 |
⊢ 1 ≤ 1 |
31 |
29 30
|
eqbrtrdi |
⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) ≤ 1 ) |
32 |
8 31
|
pm2.61dan |
⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( μ ‘ 𝐴 ) ) ≤ 1 ) |