Step |
Hyp |
Ref |
Expression |
1 |
|
nqercl |
⊢ ( 𝐴 ∈ ( N × N ) → ( [Q] ‘ 𝐴 ) ∈ Q ) |
2 |
|
nqercl |
⊢ ( 𝐵 ∈ ( N × N ) → ( [Q] ‘ 𝐵 ) ∈ Q ) |
3 |
|
mulpqnq |
⊢ ( ( ( [Q] ‘ 𝐴 ) ∈ Q ∧ ( [Q] ‘ 𝐵 ) ∈ Q ) → ( ( [Q] ‘ 𝐴 ) ·Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) ·Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ) ) |
5 |
|
enqer |
⊢ ~Q Er ( N × N ) |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ~Q Er ( N × N ) ) |
7 |
|
nqerrel |
⊢ ( 𝐴 ∈ ( N × N ) → 𝐴 ~Q ( [Q] ‘ 𝐴 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → 𝐴 ~Q ( [Q] ‘ 𝐴 ) ) |
9 |
|
elpqn |
⊢ ( ( [Q] ‘ 𝐴 ) ∈ Q → ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ) |
10 |
1 9
|
syl |
⊢ ( 𝐴 ∈ ( N × N ) → ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ) |
11 |
|
mulerpqlem |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ 𝐵 ) ) ) |
12 |
11
|
3exp |
⊢ ( 𝐴 ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) → ( 𝐵 ∈ ( N × N ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ 𝐵 ) ) ) ) ) |
13 |
10 12
|
mpd |
⊢ ( 𝐴 ∈ ( N × N ) → ( 𝐵 ∈ ( N × N ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ 𝐵 ) ) ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ~Q ( [Q] ‘ 𝐴 ) ↔ ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ 𝐵 ) ) ) |
15 |
8 14
|
mpbid |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ 𝐵 ) ) |
16 |
|
nqerrel |
⊢ ( 𝐵 ∈ ( N × N ) → 𝐵 ~Q ( [Q] ‘ 𝐵 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → 𝐵 ~Q ( [Q] ‘ 𝐵 ) ) |
18 |
|
elpqn |
⊢ ( ( [Q] ‘ 𝐵 ) ∈ Q → ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ) |
19 |
2 18
|
syl |
⊢ ( 𝐵 ∈ ( N × N ) → ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ) |
20 |
|
mulerpqlem |
⊢ ( ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 ·pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) ·pQ ( [Q] ‘ 𝐴 ) ) ) ) |
21 |
20
|
3exp |
⊢ ( 𝐵 ∈ ( N × N ) → ( ( [Q] ‘ 𝐵 ) ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 ·pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) ·pQ ( [Q] ‘ 𝐴 ) ) ) ) ) ) |
22 |
19 21
|
mpd |
⊢ ( 𝐵 ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 ·pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) ·pQ ( [Q] ‘ 𝐴 ) ) ) ) ) |
23 |
10 22
|
mpan9 |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐵 ~Q ( [Q] ‘ 𝐵 ) ↔ ( 𝐵 ·pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) ·pQ ( [Q] ‘ 𝐴 ) ) ) ) |
24 |
17 23
|
mpbid |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐵 ·pQ ( [Q] ‘ 𝐴 ) ) ~Q ( ( [Q] ‘ 𝐵 ) ·pQ ( [Q] ‘ 𝐴 ) ) ) |
25 |
|
mulcompq |
⊢ ( 𝐵 ·pQ ( [Q] ‘ 𝐴 ) ) = ( ( [Q] ‘ 𝐴 ) ·pQ 𝐵 ) |
26 |
|
mulcompq |
⊢ ( ( [Q] ‘ 𝐵 ) ·pQ ( [Q] ‘ 𝐴 ) ) = ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) |
27 |
24 25 26
|
3brtr3g |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ) |
28 |
6 15 27
|
ertrd |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ) |
29 |
|
mulpqf |
⊢ ·pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) |
30 |
29
|
fovcl |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ·pQ 𝐵 ) ∈ ( N × N ) ) |
31 |
29
|
fovcl |
⊢ ( ( ( [Q] ‘ 𝐴 ) ∈ ( N × N ) ∧ ( [Q] ‘ 𝐵 ) ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ∈ ( N × N ) ) |
32 |
10 19 31
|
syl2an |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ∈ ( N × N ) ) |
33 |
|
nqereq |
⊢ ( ( ( 𝐴 ·pQ 𝐵 ) ∈ ( N × N ) ∧ ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ∈ ( N × N ) ) → ( ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ↔ ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ) ) ) |
34 |
30 32 33
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( 𝐴 ·pQ 𝐵 ) ~Q ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ↔ ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ) ) ) |
35 |
28 34
|
mpbid |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) = ( [Q] ‘ ( ( [Q] ‘ 𝐴 ) ·pQ ( [Q] ‘ 𝐵 ) ) ) ) |
36 |
4 35
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) ·Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) ) |
37 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
38 |
|
nqerf |
⊢ [Q] : ( N × N ) ⟶ Q |
39 |
38
|
fdmi |
⊢ dom [Q] = ( N × N ) |
40 |
39
|
eleq2i |
⊢ ( 𝐴 ∈ dom [Q] ↔ 𝐴 ∈ ( N × N ) ) |
41 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom [Q] → ( [Q] ‘ 𝐴 ) = ∅ ) |
42 |
40 41
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ ( N × N ) → ( [Q] ‘ 𝐴 ) = ∅ ) |
43 |
42
|
eleq1d |
⊢ ( ¬ 𝐴 ∈ ( N × N ) → ( ( [Q] ‘ 𝐴 ) ∈ Q ↔ ∅ ∈ Q ) ) |
44 |
37 43
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ ( N × N ) → ¬ ( [Q] ‘ 𝐴 ) ∈ Q ) |
45 |
44
|
con4i |
⊢ ( ( [Q] ‘ 𝐴 ) ∈ Q → 𝐴 ∈ ( N × N ) ) |
46 |
39
|
eleq2i |
⊢ ( 𝐵 ∈ dom [Q] ↔ 𝐵 ∈ ( N × N ) ) |
47 |
|
ndmfv |
⊢ ( ¬ 𝐵 ∈ dom [Q] → ( [Q] ‘ 𝐵 ) = ∅ ) |
48 |
46 47
|
sylnbir |
⊢ ( ¬ 𝐵 ∈ ( N × N ) → ( [Q] ‘ 𝐵 ) = ∅ ) |
49 |
48
|
eleq1d |
⊢ ( ¬ 𝐵 ∈ ( N × N ) → ( ( [Q] ‘ 𝐵 ) ∈ Q ↔ ∅ ∈ Q ) ) |
50 |
37 49
|
mtbiri |
⊢ ( ¬ 𝐵 ∈ ( N × N ) → ¬ ( [Q] ‘ 𝐵 ) ∈ Q ) |
51 |
50
|
con4i |
⊢ ( ( [Q] ‘ 𝐵 ) ∈ Q → 𝐵 ∈ ( N × N ) ) |
52 |
45 51
|
anim12i |
⊢ ( ( ( [Q] ‘ 𝐴 ) ∈ Q ∧ ( [Q] ‘ 𝐵 ) ∈ Q ) → ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) ) |
53 |
|
mulnqf |
⊢ ·Q : ( Q × Q ) ⟶ Q |
54 |
53
|
fdmi |
⊢ dom ·Q = ( Q × Q ) |
55 |
54
|
ndmov |
⊢ ( ¬ ( ( [Q] ‘ 𝐴 ) ∈ Q ∧ ( [Q] ‘ 𝐵 ) ∈ Q ) → ( ( [Q] ‘ 𝐴 ) ·Q ( [Q] ‘ 𝐵 ) ) = ∅ ) |
56 |
52 55
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) ·Q ( [Q] ‘ 𝐵 ) ) = ∅ ) |
57 |
|
0nelxp |
⊢ ¬ ∅ ∈ ( N × N ) |
58 |
39
|
eleq2i |
⊢ ( ∅ ∈ dom [Q] ↔ ∅ ∈ ( N × N ) ) |
59 |
57 58
|
mtbir |
⊢ ¬ ∅ ∈ dom [Q] |
60 |
29
|
fdmi |
⊢ dom ·pQ = ( ( N × N ) × ( N × N ) ) |
61 |
60
|
ndmov |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ·pQ 𝐵 ) = ∅ ) |
62 |
61
|
eleq1d |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( 𝐴 ·pQ 𝐵 ) ∈ dom [Q] ↔ ∅ ∈ dom [Q] ) ) |
63 |
59 62
|
mtbiri |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ¬ ( 𝐴 ·pQ 𝐵 ) ∈ dom [Q] ) |
64 |
|
ndmfv |
⊢ ( ¬ ( 𝐴 ·pQ 𝐵 ) ∈ dom [Q] → ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) = ∅ ) |
65 |
63 64
|
syl |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) = ∅ ) |
66 |
56 65
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) ·Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) ) |
67 |
36 66
|
pm2.61i |
⊢ ( ( [Q] ‘ 𝐴 ) ·Q ( [Q] ‘ 𝐵 ) ) = ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) |