| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ 0 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 0 ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 0 ) ) |
| 4 |
2 3
|
oveq12d |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) |
| 5 |
1 4
|
eqeq12d |
⊢ ( 𝑗 = 0 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ 0 ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 𝑘 ) ) |
| 10 |
8 9
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 11 |
7 10
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) |
| 16 |
14 15
|
oveq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 17 |
13 16
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 𝑁 ) ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) |
| 23 |
19 22
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) ) |
| 25 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 26 |
|
exp0 |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℂ → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = 1 ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = 1 ) |
| 28 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
| 29 |
|
exp0 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) |
| 30 |
28 29
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) = ( 1 · 1 ) ) |
| 31 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 32 |
30 31
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) = 1 ) |
| 33 |
27 32
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) |
| 34 |
|
expp1 |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) ) |
| 35 |
25 34
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) ) |
| 37 |
|
oveq1 |
⊢ ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) ) |
| 38 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 39 |
|
expcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) |
| 40 |
38 39
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑘 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) ) |
| 41 |
40
|
anandirs |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) ) |
| 42 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 43 |
|
mul4 |
⊢ ( ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) · ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) ) |
| 44 |
41 42 43
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) · ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) ) |
| 45 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 47 |
|
expp1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 48 |
47
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 49 |
46 48
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) · ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) ) |
| 50 |
44 49
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 51 |
37 50
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 52 |
36 51
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 53 |
52
|
exp31 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 54 |
53
|
com12 |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 55 |
54
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 56 |
6 12 18 24 33 55
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 57 |
56
|
expdcom |
⊢ ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( 𝑁 ∈ ℕ0 → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) ) |
| 58 |
57
|
3imp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) |