Metamath Proof Explorer


Theorem mulexpd

Description: Positive integer exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
mulexpd.2 ( 𝜑𝐵 ∈ ℂ )
mulexpd.3 ( 𝜑𝑁 ∈ ℕ0 )
Assertion mulexpd ( 𝜑 → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴𝑁 ) · ( 𝐵𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 mulexpd.2 ( 𝜑𝐵 ∈ ℂ )
3 mulexpd.3 ( 𝜑𝑁 ∈ ℕ0 )
4 mulexp ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴𝑁 ) · ( 𝐵𝑁 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴𝑁 ) · ( 𝐵𝑁 ) ) )