| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulg0.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulg0.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
mulg0.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 4 |
|
0z |
⊢ 0 ∈ ℤ |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
| 8 |
1 5 2 6 3 7
|
mulgval |
⊢ ( ( 0 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = if ( 0 = 0 , 0 , if ( 0 < 0 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 0 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 0 ) ) ) ) ) |
| 9 |
|
eqid |
⊢ 0 = 0 |
| 10 |
9
|
iftruei |
⊢ if ( 0 = 0 , 0 , if ( 0 < 0 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 0 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 0 ) ) ) ) = 0 |
| 11 |
8 10
|
eqtrdi |
⊢ ( ( 0 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |
| 12 |
4 11
|
mpan |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |