| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mulg1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							mulg1.m | 
							⊢  ·   =  ( .g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) )  | 
						
						
							| 6 | 
							
								1 4 2 5
							 | 
							mulgnn | 
							⊢ ( ( 1  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( 1  ·  𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 1 ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							mpan | 
							⊢ ( 𝑋  ∈  𝐵  →  ( 1  ·  𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 9 | 
							
								
							 | 
							fvconst2g | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  1  ∈  ℕ )  →  ( ( ℕ  ×  { 𝑋 } ) ‘ 1 )  =  𝑋 )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							mpan2 | 
							⊢ ( 𝑋  ∈  𝐵  →  ( ( ℕ  ×  { 𝑋 } ) ‘ 1 )  =  𝑋 )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							seq1i | 
							⊢ ( 𝑋  ∈  𝐵  →  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 1 )  =  𝑋 )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							eqtrd | 
							⊢ ( 𝑋  ∈  𝐵  →  ( 1  ·  𝑋 )  =  𝑋 )  |