Step |
Hyp |
Ref |
Expression |
1 |
|
mulg1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulg1.m |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
1nn |
⊢ 1 ∈ ℕ |
4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
6 |
1 4 2 5
|
mulgnn |
⊢ ( ( 1 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 1 ) ) |
7 |
3 6
|
mpan |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 1 ) ) |
8 |
|
1z |
⊢ 1 ∈ ℤ |
9 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 1 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 1 ) = 𝑋 ) |
10 |
3 9
|
mpan2 |
⊢ ( 𝑋 ∈ 𝐵 → ( ( ℕ × { 𝑋 } ) ‘ 1 ) = 𝑋 ) |
11 |
8 10
|
seq1i |
⊢ ( 𝑋 ∈ 𝐵 → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 1 ) = 𝑋 ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |