| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulg1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulg1.m |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgnnp1.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 5 |
4
|
oveq1i |
⊢ ( 2 · 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) |
| 6 |
|
1nn |
⊢ 1 ∈ ℕ |
| 7 |
1 2 3
|
mulgnnp1 |
⊢ ( ( 1 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + 𝑋 ) ) |
| 8 |
6 7
|
mpan |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 1 + 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) + 𝑋 ) ) |
| 9 |
5 8
|
eqtrid |
⊢ ( 𝑋 ∈ 𝐵 → ( 2 · 𝑋 ) = ( ( 1 · 𝑋 ) + 𝑋 ) ) |
| 10 |
1 2
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 1 · 𝑋 ) + 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
| 12 |
9 11
|
eqtrd |
⊢ ( 𝑋 ∈ 𝐵 → ( 2 · 𝑋 ) = ( 𝑋 + 𝑋 ) ) |