Step |
Hyp |
Ref |
Expression |
1 |
|
mulgaddcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgaddcom.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgaddcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝑋 ) = ( 0 · 𝑋 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
6 |
4
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( 0 · 𝑋 ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( 0 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 0 · 𝑋 ) ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝑋 ) = ( 𝑦 · 𝑋 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) |
10 |
8
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝑋 ) = ( ( 𝑦 + 1 ) · 𝑋 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) ) |
14 |
12
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝑋 ) = ( - 𝑦 · 𝑋 ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( - 𝑦 · 𝑋 ) + 𝑋 ) ) |
18 |
16
|
oveq2d |
⊢ ( 𝑥 = - 𝑦 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
22 |
20
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑋 + ( 𝑥 · 𝑋 ) ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑥 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑥 · 𝑋 ) ) ↔ ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
25 |
1 3 24
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
26 |
1 24 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
29 |
27
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0 · 𝑋 ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
30 |
1 3 24
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
31 |
29 30
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0 · 𝑋 ) ) = 𝑋 ) |
32 |
25 28 31
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 0 · 𝑋 ) ) ) |
33 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
34 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → 𝐺 ∈ Grp ) |
35 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → 𝑋 ∈ 𝐵 ) |
36 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
37 |
36
|
3com23 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
38 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
39 |
34 35 37 35 38
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
40 |
33 39
|
syl3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
42 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
44 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
45 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
46 |
1 2 3
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) |
47 |
43 44 45 46
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) |
48 |
47
|
eqeq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ↔ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
49 |
48
|
biimpar |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) |
50 |
49
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( ( 𝑋 + ( 𝑦 · 𝑋 ) ) + 𝑋 ) ) |
51 |
47
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( 𝑋 + ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) ) |
53 |
41 50 52
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
54 |
53
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) |
55 |
54
|
3expia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) |
56 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
57 |
1 2 3
|
mulgaddcomlem |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
58 |
57
|
3exp1 |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
59 |
58
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℤ → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
60 |
59
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℤ → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) |
61 |
56 60
|
syl5 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ → ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) ) ) |
62 |
7 11 15 19 23 32 55 61
|
zindd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) |
63 |
62
|
ex |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) ) |
64 |
63
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) ) ) |
65 |
64
|
3imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑁 · 𝑋 ) ) ) |