| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgaddcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgaddcom.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgaddcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → 𝐺 ∈ Grp ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 8 |
|
znegcl |
⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) |
| 9 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 10 |
8 9
|
syl3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 13 |
1 12
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 16 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) ) |
| 17 |
5 7 11 15 16
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) ) |
| 18 |
1 2 12
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 20 |
19
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 21 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 23 |
1 3 12
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 24 |
5 7 22 23
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 25 |
19
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 26 |
1 3 12
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 27 |
5 22 7 26
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 28 |
|
fveq2 |
⊢ ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
| 30 |
25 27 29
|
3eqtr2rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) |
| 31 |
20 24 30
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) |
| 32 |
31
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) ) |
| 33 |
1 3 12
|
grpasscan1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) = ( - 𝑦 · 𝑋 ) ) |
| 34 |
5 7 11 33
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) = ( - 𝑦 · 𝑋 ) ) |
| 35 |
17 32 34
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( - 𝑦 · 𝑋 ) ) |
| 36 |
35
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( ( - 𝑦 · 𝑋 ) + 𝑋 ) ) |
| 37 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
| 38 |
4 6 10 37
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
| 40 |
1 3 12
|
grpasscan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
| 41 |
5 39 7 40
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
| 42 |
36 41
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |