Step |
Hyp |
Ref |
Expression |
1 |
|
mulgaddcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgaddcom.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgaddcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → 𝐺 ∈ Grp ) |
6 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
8 |
|
znegcl |
⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) |
9 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
10 |
8 9
|
syl3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
13 |
1 12
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
16 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) ) |
17 |
5 7 11 15 16
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) ) |
18 |
1 2 12
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
20 |
19
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
21 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
23 |
1 3 12
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
24 |
5 7 22 23
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
25 |
19
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
26 |
1 3 12
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
27 |
5 22 7 26
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑦 · 𝑋 ) ) ) ) |
28 |
|
fveq2 |
⊢ ( ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑦 · 𝑋 ) + 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) ) |
30 |
25 27 29
|
3eqtr2rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) |
31 |
20 24 30
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) |
32 |
31
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( - 𝑦 · 𝑋 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) ) |
33 |
1 3 12
|
grpasscan1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) = ( - 𝑦 · 𝑋 ) ) |
34 |
5 7 11 33
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + ( - 𝑦 · 𝑋 ) ) ) = ( - 𝑦 · 𝑋 ) ) |
35 |
17 32 34
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( - 𝑦 · 𝑋 ) ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( ( - 𝑦 · 𝑋 ) + 𝑋 ) ) |
37 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( - 𝑦 · 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
38 |
4 6 10 37
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ) |
40 |
1 3 12
|
grpasscan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
41 |
5 39 7 40
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( ( 𝑋 + ( - 𝑦 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |
42 |
36 41
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( 𝑦 · 𝑋 ) ) ) → ( ( - 𝑦 · 𝑋 ) + 𝑋 ) = ( 𝑋 + ( - 𝑦 · 𝑋 ) ) ) |