| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℕ ) |
| 3 |
2
|
nnzd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ ) |
| 4 |
|
simp2 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 5 |
3 4
|
zmulcld |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑀 ) ∈ ℤ ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 7 |
3 6
|
zmulcld |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) |
| 8 |
5 7
|
gcdcld |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∈ ℕ0 ) |
| 9 |
2
|
nnnn0d |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℕ0 ) |
| 10 |
|
gcdcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 11 |
10
|
3adant1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 12 |
9 11
|
nn0mulcld |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∈ ℕ0 ) |
| 13 |
8
|
nn0cnd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∈ ℂ ) |
| 14 |
2
|
nncnd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℂ ) |
| 15 |
2
|
nnne0d |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ≠ 0 ) |
| 16 |
13 14 15
|
divcan2d |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) = ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) |
| 17 |
|
gcddvds |
⊢ ( ( ( 𝐾 · 𝑀 ) ∈ ℤ ∧ ( 𝐾 · 𝑁 ) ∈ ℤ ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ∧ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) ) |
| 18 |
5 7 17
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ∧ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) ) |
| 19 |
18
|
simpld |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ) |
| 20 |
16 19
|
eqbrtrd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · 𝑀 ) ) |
| 21 |
|
dvdsmul1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝐾 ∥ ( 𝐾 · 𝑀 ) ) |
| 22 |
3 4 21
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∥ ( 𝐾 · 𝑀 ) ) |
| 23 |
|
dvdsmul1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∥ ( 𝐾 · 𝑁 ) ) |
| 24 |
3 6 23
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∥ ( 𝐾 · 𝑁 ) ) |
| 25 |
|
dvdsgcd |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 · 𝑀 ) ∈ ℤ ∧ ( 𝐾 · 𝑁 ) ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝐾 · 𝑀 ) ∧ 𝐾 ∥ ( 𝐾 · 𝑁 ) ) → 𝐾 ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) ) |
| 26 |
3 5 7 25
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝐾 · 𝑀 ) ∧ 𝐾 ∥ ( 𝐾 · 𝑁 ) ) → 𝐾 ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) ) |
| 27 |
22 24 26
|
mp2and |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) |
| 28 |
8
|
nn0zd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∈ ℤ ) |
| 29 |
|
dvdsval2 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∈ ℤ ) → ( 𝐾 ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ↔ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∈ ℤ ) ) |
| 30 |
3 15 28 29
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ↔ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∈ ℤ ) ) |
| 31 |
27 30
|
mpbid |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∈ ℤ ) |
| 32 |
|
dvdscmulr |
⊢ ( ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ) ) → ( ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · 𝑀 ) ↔ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑀 ) ) |
| 33 |
31 4 3 15 32
|
syl112anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · 𝑀 ) ↔ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑀 ) ) |
| 34 |
20 33
|
mpbid |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑀 ) |
| 35 |
18
|
simprd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) |
| 36 |
16 35
|
eqbrtrd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · 𝑁 ) ) |
| 37 |
|
dvdscmulr |
⊢ ( ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ) ) → ( ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · 𝑁 ) ↔ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑁 ) ) |
| 38 |
31 6 3 15 37
|
syl112anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · 𝑁 ) ↔ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑁 ) ) |
| 39 |
36 38
|
mpbid |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑁 ) |
| 40 |
|
dvdsgcd |
⊢ ( ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑀 ∧ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑁 ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 41 |
31 4 6 40
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑀 ∧ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ 𝑁 ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 42 |
34 39 41
|
mp2and |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ ( 𝑀 gcd 𝑁 ) ) |
| 43 |
11
|
nn0zd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 44 |
|
dvdscmul |
⊢ ( ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ ( 𝑀 gcd 𝑁 ) → ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 45 |
31 43 3 44
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ∥ ( 𝑀 gcd 𝑁 ) → ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 46 |
42 45
|
mpd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) / 𝐾 ) ) ∥ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) |
| 47 |
16 46
|
eqbrtrrd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) |
| 48 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 49 |
48
|
3adant1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 50 |
49
|
simpld |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 51 |
|
dvdscmul |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ) ) |
| 52 |
43 4 3 51
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ) ) |
| 53 |
50 52
|
mpd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ) |
| 54 |
49
|
simprd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 55 |
|
dvdscmul |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) ) |
| 56 |
43 6 3 55
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) ) |
| 57 |
54 56
|
mpd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) |
| 58 |
12
|
nn0zd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 59 |
|
dvdsgcd |
⊢ ( ( ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ ( 𝐾 · 𝑀 ) ∈ ℤ ∧ ( 𝐾 · 𝑁 ) ∈ ℤ ) → ( ( ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ∧ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) ) |
| 60 |
58 5 7 59
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑀 ) ∧ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( 𝐾 · 𝑁 ) ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) ) |
| 61 |
53 57 60
|
mp2and |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) |
| 62 |
|
dvdseq |
⊢ ( ( ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∈ ℕ0 ∧ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∈ ℕ0 ) ∧ ( ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ∥ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∧ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ∥ ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) |
| 63 |
8 12 47 61 62
|
syl22anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) |
| 64 |
63
|
3expib |
⊢ ( 𝐾 ∈ ℕ → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 65 |
|
gcd0val |
⊢ ( 0 gcd 0 ) = 0 |
| 66 |
10
|
3adant1 |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 67 |
66
|
nn0cnd |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
| 68 |
67
|
mul02d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 · ( 𝑀 gcd 𝑁 ) ) = 0 ) |
| 69 |
65 68
|
eqtr4id |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 gcd 0 ) = ( 0 · ( 𝑀 gcd 𝑁 ) ) ) |
| 70 |
|
simp1 |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 = 0 ) |
| 71 |
70
|
oveq1d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑀 ) = ( 0 · 𝑀 ) ) |
| 72 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 73 |
72
|
3ad2ant2 |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 74 |
73
|
mul02d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 · 𝑀 ) = 0 ) |
| 75 |
71 74
|
eqtrd |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑀 ) = 0 ) |
| 76 |
70
|
oveq1d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑁 ) = ( 0 · 𝑁 ) ) |
| 77 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 78 |
77
|
3ad2ant3 |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 79 |
78
|
mul02d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 · 𝑁 ) = 0 ) |
| 80 |
76 79
|
eqtrd |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑁 ) = 0 ) |
| 81 |
75 80
|
oveq12d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 0 gcd 0 ) ) |
| 82 |
70
|
oveq1d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) = ( 0 · ( 𝑀 gcd 𝑁 ) ) ) |
| 83 |
69 81 82
|
3eqtr4d |
⊢ ( ( 𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) |
| 84 |
83
|
3expib |
⊢ ( 𝐾 = 0 → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 85 |
64 84
|
jaoi |
⊢ ( ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 86 |
1 85
|
sylbi |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 87 |
86
|
3impib |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) |