| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ ) |
| 2 |
|
simp2 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 3 |
|
simp3 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 4 |
2 3
|
zmulcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 5 |
1 4
|
gcdcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℕ0 ) |
| 6 |
5
|
nn0zd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℤ ) |
| 7 |
|
dvds0 |
⊢ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℤ → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 0 ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 0 ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) = 0 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 0 ) |
| 10 |
|
oveq2 |
⊢ ( ( 𝐾 gcd 𝑁 ) = 0 → ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) = ( ( 𝐾 gcd 𝑀 ) · 0 ) ) |
| 11 |
1 2
|
gcdcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑀 ) ∈ ℕ0 ) |
| 12 |
11
|
nn0cnd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑀 ) ∈ ℂ ) |
| 13 |
12
|
mul01d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑀 ) · 0 ) = 0 ) |
| 14 |
10 13
|
sylan9eqr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) = 0 ) → ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) = 0 ) |
| 15 |
9 14
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) = 0 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) |
| 16 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℤ ) |
| 17 |
16
|
zcnd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℂ ) |
| 18 |
1 3
|
gcdcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∈ ℕ0 ) |
| 19 |
18
|
nn0zd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∈ ℤ ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd 𝑁 ) ∈ ℤ ) |
| 21 |
20
|
zcnd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd 𝑁 ) ∈ ℂ ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd 𝑁 ) ≠ 0 ) |
| 23 |
17 21 22
|
divcan1d |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) = ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ) |
| 24 |
|
gcddvds |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 𝐾 ∧ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 25 |
1 4 24
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 𝐾 ∧ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 26 |
25
|
simpld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 𝐾 ) |
| 27 |
6 1 19 26
|
dvdsmultr1d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝐾 · ( 𝐾 gcd 𝑁 ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝐾 · ( 𝐾 gcd 𝑁 ) ) ) |
| 29 |
23 28
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 · ( 𝐾 gcd 𝑁 ) ) ) |
| 30 |
|
gcddvds |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑁 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 31 |
1 3 30
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑁 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 32 |
31
|
simpld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∥ 𝐾 ) |
| 33 |
31
|
simprd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∥ 𝑁 ) |
| 34 |
|
dvdsmultr2 |
⊢ ( ( ( 𝐾 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑁 ) ∥ 𝑁 → ( 𝐾 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 35 |
19 2 3 34
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑁 ) ∥ 𝑁 → ( 𝐾 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 36 |
33 35
|
mpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 37 |
|
dvdsgcd |
⊢ ( ( ( 𝐾 gcd 𝑁 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( ( 𝐾 gcd 𝑁 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝐾 gcd 𝑁 ) ∥ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 38 |
19 1 4 37
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 gcd 𝑁 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝐾 gcd 𝑁 ) ∥ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 39 |
32 36 38
|
mp2and |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∥ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd 𝑁 ) ∥ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ) |
| 41 |
|
dvdsval2 |
⊢ ( ( ( 𝐾 gcd 𝑁 ) ∈ ℤ ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ∧ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℤ ) → ( ( 𝐾 gcd 𝑁 ) ∥ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ↔ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 42 |
20 22 16 41
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( 𝐾 gcd 𝑁 ) ∥ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ↔ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 43 |
40 42
|
mpbid |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ) |
| 44 |
1
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → 𝐾 ∈ ℤ ) |
| 45 |
|
dvdsmulcr |
⊢ ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ( ( 𝐾 gcd 𝑁 ) ∈ ℤ ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) ) → ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 · ( 𝐾 gcd 𝑁 ) ) ↔ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝐾 ) ) |
| 46 |
43 44 20 22 45
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 · ( 𝐾 gcd 𝑁 ) ) ↔ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝐾 ) ) |
| 47 |
29 46
|
mpbid |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝐾 ) |
| 48 |
|
nn0abscl |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℕ0 ) |
| 49 |
2 48
|
syl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ 𝑀 ) ∈ ℕ0 ) |
| 50 |
49
|
nn0zd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ 𝑀 ) ∈ ℤ ) |
| 51 |
|
dvdsmultr2 |
⊢ ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℤ ∧ ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 𝐾 → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝐾 ) ) ) |
| 52 |
6 50 1 51
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 𝐾 → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝐾 ) ) ) |
| 53 |
26 52
|
mpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝐾 ) ) |
| 54 |
50 3
|
zmulcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) · 𝑁 ) ∈ ℤ ) |
| 55 |
25
|
simprd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝑀 · 𝑁 ) ) |
| 56 |
|
iddvds |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∥ 𝑀 ) |
| 57 |
2 56
|
syl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ 𝑀 ) |
| 58 |
|
dvdsabsb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∥ 𝑀 ↔ 𝑀 ∥ ( abs ‘ 𝑀 ) ) ) |
| 59 |
2 2 58
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑀 ↔ 𝑀 ∥ ( abs ‘ 𝑀 ) ) ) |
| 60 |
57 59
|
mpbid |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( abs ‘ 𝑀 ) ) |
| 61 |
|
dvdsmulc |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( abs ‘ 𝑀 ) → ( 𝑀 · 𝑁 ) ∥ ( ( abs ‘ 𝑀 ) · 𝑁 ) ) ) |
| 62 |
2 50 3 61
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( abs ‘ 𝑀 ) → ( 𝑀 · 𝑁 ) ∥ ( ( abs ‘ 𝑀 ) · 𝑁 ) ) ) |
| 63 |
60 62
|
mpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∥ ( ( abs ‘ 𝑀 ) · 𝑁 ) ) |
| 64 |
6 4 54 55 63
|
dvdstrd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝑁 ) ) |
| 65 |
50 1
|
zmulcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) · 𝐾 ) ∈ ℤ ) |
| 66 |
|
dvdsgcd |
⊢ ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℤ ∧ ( ( abs ‘ 𝑀 ) · 𝐾 ) ∈ ℤ ∧ ( ( abs ‘ 𝑀 ) · 𝑁 ) ∈ ℤ ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝐾 ) ∧ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝑁 ) ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( ( abs ‘ 𝑀 ) · 𝐾 ) gcd ( ( abs ‘ 𝑀 ) · 𝑁 ) ) ) ) |
| 67 |
6 65 54 66
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝐾 ) ∧ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( abs ‘ 𝑀 ) · 𝑁 ) ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( ( abs ‘ 𝑀 ) · 𝐾 ) gcd ( ( abs ‘ 𝑀 ) · 𝑁 ) ) ) ) |
| 68 |
53 64 67
|
mp2and |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( ( abs ‘ 𝑀 ) · 𝐾 ) gcd ( ( abs ‘ 𝑀 ) · 𝑁 ) ) ) |
| 69 |
18
|
nn0red |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∈ ℝ ) |
| 70 |
18
|
nn0ge0d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝐾 gcd 𝑁 ) ) |
| 71 |
69 70
|
absidd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐾 gcd 𝑁 ) ) = ( 𝐾 gcd 𝑁 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) · ( abs ‘ ( 𝐾 gcd 𝑁 ) ) ) = ( ( abs ‘ 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) |
| 73 |
2
|
zcnd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 74 |
18
|
nn0cnd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑁 ) ∈ ℂ ) |
| 75 |
73 74
|
absmuld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ ( 𝐾 gcd 𝑁 ) ) ) ) |
| 76 |
|
mulgcd |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) · 𝐾 ) gcd ( ( abs ‘ 𝑀 ) · 𝑁 ) ) = ( ( abs ‘ 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) |
| 77 |
49 1 3 76
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) · 𝐾 ) gcd ( ( abs ‘ 𝑀 ) · 𝑁 ) ) = ( ( abs ‘ 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) |
| 78 |
72 75 77
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) = ( ( ( abs ‘ 𝑀 ) · 𝐾 ) gcd ( ( abs ‘ 𝑀 ) · 𝑁 ) ) ) |
| 79 |
68 78
|
breqtrrd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( abs ‘ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) ) |
| 80 |
2 19
|
zmulcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ) |
| 81 |
|
dvdsabsb |
⊢ ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℤ ∧ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ↔ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( abs ‘ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) ) ) |
| 82 |
6 80 81
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ↔ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( abs ‘ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) ) ) |
| 83 |
79 82
|
mpbird |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) |
| 85 |
23 84
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ) |
| 86 |
2
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → 𝑀 ∈ ℤ ) |
| 87 |
|
dvdsmulcr |
⊢ ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( ( 𝐾 gcd 𝑁 ) ∈ ℤ ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) ) → ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ↔ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝑀 ) ) |
| 88 |
43 86 20 22 87
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝑀 · ( 𝐾 gcd 𝑁 ) ) ↔ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝑀 ) ) |
| 89 |
85 88
|
mpbid |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝑀 ) |
| 90 |
|
dvdsgcd |
⊢ ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝐾 ∧ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝑀 ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 gcd 𝑀 ) ) ) |
| 91 |
43 44 86 90
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝐾 ∧ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ 𝑀 ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 gcd 𝑀 ) ) ) |
| 92 |
47 89 91
|
mp2and |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 gcd 𝑀 ) ) |
| 93 |
11
|
nn0zd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑀 ) ∈ ℤ ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd 𝑀 ) ∈ ℤ ) |
| 95 |
|
dvdsmulc |
⊢ ( ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∈ ℤ ∧ ( 𝐾 gcd 𝑀 ) ∈ ℤ ∧ ( 𝐾 gcd 𝑁 ) ∈ ℤ ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 gcd 𝑀 ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) ) |
| 96 |
43 94 20 95
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) ∥ ( 𝐾 gcd 𝑀 ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) ) |
| 97 |
92 96
|
mpd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) / ( 𝐾 gcd 𝑁 ) ) · ( 𝐾 gcd 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) |
| 98 |
23 97
|
eqbrtrrd |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑁 ) ≠ 0 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) |
| 99 |
15 98
|
pm2.61dane |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) |