Step |
Hyp |
Ref |
Expression |
1 |
|
mulgcd |
⊢ ( ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐵 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐵 ) ) ) |
2 |
1
|
3coml |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐵 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐵 ) ) ) |
3 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
5 |
|
nn0cn |
⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℂ ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
7 |
4 6
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
8 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
10 |
9 6
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
11 |
7 10
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐵 · 𝐶 ) ) = ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐵 ) ) ) |
12 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
14 |
13
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
15 |
14 6
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) · 𝐶 ) = ( 𝐶 · ( 𝐴 gcd 𝐵 ) ) ) |
16 |
2 11 15
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝐶 ) ) |