| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgcd | ⊢ ( ( 𝐶  ∈  ℕ0  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐶  ·  𝐴 )  gcd  ( 𝐶  ·  𝐵 ) )  =  ( 𝐶  ·  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 2 | 1 | 3coml | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( ( 𝐶  ·  𝐴 )  gcd  ( 𝐶  ·  𝐵 ) )  =  ( 𝐶  ·  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 3 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | nn0cn | ⊢ ( 𝐶  ∈  ℕ0  →  𝐶  ∈  ℂ ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  𝐶  ∈  ℂ ) | 
						
							| 7 | 4 6 | mulcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴  ·  𝐶 )  =  ( 𝐶  ·  𝐴 ) ) | 
						
							| 8 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 9 6 | mulcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐵  ·  𝐶 )  =  ( 𝐶  ·  𝐵 ) ) | 
						
							| 11 | 7 10 | oveq12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( ( 𝐴  ·  𝐶 )  gcd  ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐶  ·  𝐴 )  gcd  ( 𝐶  ·  𝐵 ) ) ) | 
						
							| 12 |  | gcdcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0cnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℂ ) | 
						
							| 15 | 14 6 | mulcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  ·  𝐶 )  =  ( 𝐶  ·  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 16 | 2 11 15 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℕ0 )  →  ( ( 𝐴  ·  𝐶 )  gcd  ( 𝐵  ·  𝐶 ) )  =  ( ( 𝐴  gcd  𝐵 )  ·  𝐶 ) ) |