| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnncl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgnncl.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 4 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
| 5 |
|
ssidd |
⊢ ( 𝐺 ∈ Grp → 𝐵 ⊆ 𝐵 ) |
| 6 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 8 |
1 7
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 10 |
1 9
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
mulgsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |