Step |
Hyp |
Ref |
Expression |
1 |
|
mulgdi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgdi.m |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgdi.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
6 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
7 |
|
simplr2 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
8 |
|
simplr3 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) |
9 |
1 2 3
|
mulgnn0di |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
10 |
5 6 7 8 9
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
11 |
4
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
12 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) |
13 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
15 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) |
17 |
1 2 3
|
mulgnn0di |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( - 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) ) |
18 |
11 12 14 16 17
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) ) |
19 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
20 |
19
|
adantr |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
21 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑀 ∈ ℤ ) |
22 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
23 |
20 13 15 22
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
24 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
25 |
1 2 24
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
26 |
20 21 23 25
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
28 |
1 2 24
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
29 |
20 21 13 28
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
30 |
1 2 24
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( - 𝑀 · 𝑌 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
31 |
20 21 15 30
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · 𝑌 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
32 |
29 31
|
oveq12d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
34 |
18 27 33
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
35 |
|
simpl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) |
36 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
37 |
20 21 13 36
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
38 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
39 |
20 21 15 38
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
40 |
1 3 24
|
ablinvadd |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑌 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
41 |
35 37 39 40
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
43 |
34 42
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) |
44 |
43
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) ) |
45 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
46 |
20 21 23 45
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
48 |
1 24
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) |
49 |
20 47 48
|
syl2an2r |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) |
50 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑌 ) ∈ 𝐵 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
51 |
20 37 39 50
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
53 |
1 24
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
54 |
20 52 53
|
syl2an2r |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
55 |
44 49 54
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
56 |
|
elznn0 |
⊢ ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℝ ∧ ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) ) |
57 |
56
|
simprbi |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) |
58 |
21 57
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) |
59 |
10 55 58
|
mpjaodan |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |