| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ianor |
⊢ ( ¬ ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) |
| 2 |
|
0re |
⊢ 0 ∈ ℝ |
| 3 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 6 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
| 7 |
2 6
|
mpan |
⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
| 9 |
5 8
|
orbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) ) |
| 11 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 12 |
2 11
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
| 14 |
13
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 15 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 19 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 ) |
| 20 |
|
divge0 |
⊢ ( ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐴 ) ) |
| 21 |
16 17 18 19 20
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐴 ) ) |
| 22 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 23 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 24 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 26 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 27 |
26
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 28 |
23 25 27
|
divcan3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐴 ) = 𝐵 ) |
| 29 |
21 28
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝐵 ) |
| 30 |
14 29
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
| 31 |
30
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( 0 < 𝐴 → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 32 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 33 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 34 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 35 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) |
| 36 |
|
divge0 |
⊢ ( ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) |
| 37 |
32 33 34 35 36
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) |
| 38 |
24
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 39 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 40 |
|
gt0ne0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) |
| 41 |
40
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 ) |
| 42 |
38 39 41
|
divcan4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 43 |
37 42
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ 𝐴 ) |
| 44 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 → 0 ≤ 𝐵 ) ) |
| 45 |
2 44
|
mpan |
⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → 0 ≤ 𝐵 ) ) |
| 46 |
45
|
imp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 0 ≤ 𝐵 ) |
| 47 |
46
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ 𝐵 ) |
| 48 |
43 47
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
| 49 |
48
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( 0 < 𝐵 → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 50 |
31 49
|
jaod |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 51 |
10 50
|
sylbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 52 |
1 51
|
biimtrid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ¬ ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 53 |
52
|
orrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 54 |
53
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · 𝐵 ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) ) |
| 55 |
|
le0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
| 56 |
|
le0neg1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) |
| 57 |
55 56
|
bi2anan9 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ↔ ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) |
| 58 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 59 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
| 60 |
|
mulge0 |
⊢ ( ( ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ∧ ( - 𝐵 ∈ ℝ ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) |
| 61 |
60
|
an4s |
⊢ ( ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) ∧ ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) |
| 62 |
61
|
ex |
⊢ ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) ) |
| 63 |
58 59 62
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) ) |
| 64 |
|
mul2neg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 65 |
24 22 64
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 66 |
65
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( - 𝐴 · - 𝐵 ) ↔ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 67 |
63 66
|
sylibd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 68 |
57 67
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 69 |
|
mulge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 70 |
69
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 71 |
70
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 72 |
68 71
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 73 |
54 72
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) ) |