Step |
Hyp |
Ref |
Expression |
1 |
|
ianor |
⊢ ( ¬ ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) |
2 |
|
0re |
⊢ 0 ∈ ℝ |
3 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
6 |
|
ltnle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
7 |
2 6
|
mpan |
⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
9 |
5 8
|
orbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) ) |
11 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
12 |
2 11
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
13 |
12
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
14 |
13
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝐴 ) |
15 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
17 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
18 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ ) |
19 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 ) |
20 |
|
divge0 |
⊢ ( ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐴 ) ) |
21 |
16 17 18 19 20
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐴 ) ) |
22 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐵 ∈ ℂ ) |
24 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℂ ) |
26 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
27 |
26
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ≠ 0 ) |
28 |
23 25 27
|
divcan3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐴 ) = 𝐵 ) |
29 |
21 28
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝐵 ) |
30 |
14 29
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
31 |
30
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( 0 < 𝐴 → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
32 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
33 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
34 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
35 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) |
36 |
|
divge0 |
⊢ ( ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) |
37 |
32 33 34 35 36
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) |
38 |
24
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℂ ) |
39 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
40 |
|
gt0ne0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) |
41 |
40
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 ) |
42 |
38 39 41
|
divcan4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
43 |
37 42
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ 𝐴 ) |
44 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 → 0 ≤ 𝐵 ) ) |
45 |
2 44
|
mpan |
⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → 0 ≤ 𝐵 ) ) |
46 |
45
|
imp |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 0 ≤ 𝐵 ) |
47 |
46
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ 𝐵 ) |
48 |
43 47
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
49 |
48
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( 0 < 𝐵 → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
50 |
31 49
|
jaod |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
51 |
10 50
|
sylbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
52 |
1 51
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ¬ ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
53 |
52
|
orrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
54 |
53
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · 𝐵 ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) ) |
55 |
|
le0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
56 |
|
le0neg1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) |
57 |
55 56
|
bi2anan9 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ↔ ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) |
58 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
59 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
60 |
|
mulge0 |
⊢ ( ( ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ∧ ( - 𝐵 ∈ ℝ ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) |
61 |
60
|
an4s |
⊢ ( ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) ∧ ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) |
62 |
61
|
ex |
⊢ ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) ) |
63 |
58 59 62
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) ) |
64 |
|
mul2neg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
65 |
24 22 64
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
66 |
65
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( - 𝐴 · - 𝐵 ) ↔ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
67 |
63 66
|
sylibd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
68 |
57 67
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
69 |
|
mulge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
70 |
69
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
71 |
70
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
72 |
68 71
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
73 |
54 72
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) ) |