Metamath Proof Explorer
Description: The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
addge0d.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
|
addge0d.4 |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
|
Assertion |
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
addge0d.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 |
|
addge0d.4 |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
5 |
|
mulge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
6 |
1 3 2 4 5
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) |