Metamath Proof Explorer


Theorem mulge0d

Description: The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
addge0d.3 ( 𝜑 → 0 ≤ 𝐴 )
addge0d.4 ( 𝜑 → 0 ≤ 𝐵 )
Assertion mulge0d ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 addge0d.3 ( 𝜑 → 0 ≤ 𝐴 )
4 addge0d.4 ( 𝜑 → 0 ≤ 𝐵 )
5 mulge0 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) )
6 1 3 2 4 5 syl22anc ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) )