Metamath Proof Explorer


Theorem mulgfval

Description: Group multiple (exponentiation) operation. For a shorter proof using ax-rep , see mulgfvalALT . (Contributed by Mario Carneiro, 11-Dec-2014) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)

Ref Expression
Hypotheses mulgval.b 𝐵 = ( Base ‘ 𝐺 )
mulgval.p + = ( +g𝐺 )
mulgval.o 0 = ( 0g𝐺 )
mulgval.i 𝐼 = ( invg𝐺 )
mulgval.t · = ( .g𝐺 )
Assertion mulgfval · = ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mulgval.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgval.p + = ( +g𝐺 )
3 mulgval.o 0 = ( 0g𝐺 )
4 mulgval.i 𝐼 = ( invg𝐺 )
5 mulgval.t · = ( .g𝐺 )
6 eqidd ( 𝑤 = 𝐺 → ℤ = ℤ )
7 fveq2 ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) )
8 7 1 eqtr4di ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 )
9 fveq2 ( 𝑤 = 𝐺 → ( 0g𝑤 ) = ( 0g𝐺 ) )
10 9 3 eqtr4di ( 𝑤 = 𝐺 → ( 0g𝑤 ) = 0 )
11 fvex ( +g𝑤 ) ∈ V
12 1z 1 ∈ ℤ
13 11 12 seqexw seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V
14 13 a1i ( 𝑤 = 𝐺 → seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V )
15 id ( 𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) → 𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) )
16 fveq2 ( 𝑤 = 𝐺 → ( +g𝑤 ) = ( +g𝐺 ) )
17 16 2 eqtr4di ( 𝑤 = 𝐺 → ( +g𝑤 ) = + )
18 17 seqeq2d ( 𝑤 = 𝐺 → seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) = seq 1 ( + , ( ℕ × { 𝑥 } ) ) )
19 15 18 sylan9eqr ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑠 = seq 1 ( + , ( ℕ × { 𝑥 } ) ) )
20 19 fveq1d ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) )
21 simpl ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑤 = 𝐺 )
22 21 fveq2d ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg𝑤 ) = ( invg𝐺 ) )
23 22 4 eqtr4di ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg𝑤 ) = 𝐼 )
24 19 fveq1d ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠 ‘ - 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) )
25 23 24 fveq12d ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( ( invg𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) = ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) )
26 20 25 ifeq12d ( ( 𝑤 = 𝐺𝑠 = seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → if ( 0 < 𝑛 , ( 𝑠𝑛 ) , ( ( invg𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) )
27 14 26 csbied ( 𝑤 = 𝐺 seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 if ( 0 < 𝑛 , ( 𝑠𝑛 ) , ( ( invg𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) )
28 10 27 ifeq12d ( 𝑤 = 𝐺 → if ( 𝑛 = 0 , ( 0g𝑤 ) , seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 if ( 0 < 𝑛 , ( 𝑠𝑛 ) , ( ( invg𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) = if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )
29 6 8 28 mpoeq123dv ( 𝑤 = 𝐺 → ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g𝑤 ) , seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 if ( 0 < 𝑛 , ( 𝑠𝑛 ) , ( ( invg𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) )
30 df-mulg .g = ( 𝑤 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g𝑤 ) , seq 1 ( ( +g𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 if ( 0 < 𝑛 , ( 𝑠𝑛 ) , ( ( invg𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) )
31 zex ℤ ∈ V
32 1 fvexi 𝐵 ∈ V
33 snex { 0 } ∈ V
34 2 fvexi + ∈ V
35 34 rnex ran + ∈ V
36 35 32 unex ( ran +𝐵 ) ∈ V
37 4 fvexi 𝐼 ∈ V
38 37 rnex ran 𝐼 ∈ V
39 p0ex { ∅ } ∈ V
40 38 39 unex ( ran 𝐼 ∪ { ∅ } ) ∈ V
41 36 40 unex ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ∈ V
42 33 41 unex ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ∈ V
43 ssun1 { 0 } ⊆ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
44 3 fvexi 0 ∈ V
45 44 snid 0 ∈ { 0 }
46 43 45 sselii 0 ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
47 46 a1i ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) → 0 ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
48 ssun2 𝐵 ⊆ ( ran +𝐵 )
49 ssun1 ( ran +𝐵 ) ⊆ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) )
50 48 49 sstri 𝐵 ⊆ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) )
51 ssun2 ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ⊆ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
52 50 51 sstri 𝐵 ⊆ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
53 fveq2 ( 𝑛 = 1 → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) )
54 53 adantl ( ( 𝑥𝐵𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) )
55 seq1 ( 1 ∈ ℤ → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) = ( ( ℕ × { 𝑥 } ) ‘ 1 ) )
56 12 55 ax-mp ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) = ( ( ℕ × { 𝑥 } ) ‘ 1 )
57 1nn 1 ∈ ℕ
58 vex 𝑥 ∈ V
59 58 fvconst2 ( 1 ∈ ℕ → ( ( ℕ × { 𝑥 } ) ‘ 1 ) = 𝑥 )
60 57 59 ax-mp ( ( ℕ × { 𝑥 } ) ‘ 1 ) = 𝑥
61 60 eleq1i ( ( ( ℕ × { 𝑥 } ) ‘ 1 ) ∈ 𝐵𝑥𝐵 )
62 61 biimpri ( 𝑥𝐵 → ( ( ℕ × { 𝑥 } ) ‘ 1 ) ∈ 𝐵 )
63 56 62 eqeltrid ( 𝑥𝐵 → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ∈ 𝐵 )
64 63 adantr ( ( 𝑥𝐵𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ∈ 𝐵 )
65 54 64 eqeltrd ( ( 𝑥𝐵𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ 𝐵 )
66 52 65 sseldi ( ( 𝑥𝐵𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
67 66 ad4ant24 ( ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ 𝑛 ∈ ( ℤ ‘ 1 ) ) ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
68 zcn ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ )
69 npcan1 ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 )
70 68 69 syl ( 𝑛 ∈ ℤ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 )
71 70 fveq2d ( 𝑛 ∈ ℤ → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) )
72 71 adantr ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) )
73 seqp1 ( ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) )
74 ssun1 ran + ⊆ ( ran +𝐵 )
75 ssun2 { ∅ } ⊆ ( ran 𝐼 ∪ { ∅ } )
76 unss12 ( ( ran + ⊆ ( ran +𝐵 ) ∧ { ∅ } ⊆ ( ran 𝐼 ∪ { ∅ } ) ) → ( ran + ∪ { ∅ } ) ⊆ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
77 74 75 76 mp2an ( ran + ∪ { ∅ } ) ⊆ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) )
78 77 51 sstri ( ran + ∪ { ∅ } ) ⊆ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
79 df-ov ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) = ( + ‘ ⟨ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) , ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ⟩ )
80 fvrn0 ( + ‘ ⟨ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) , ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ⟩ ) ∈ ( ran + ∪ { ∅ } )
81 79 80 eqeltri ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( ran + ∪ { ∅ } )
82 78 81 sselii ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
83 73 82 eqeltrdi ( ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
84 83 adantl ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
85 72 84 eqeltrrd ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
86 85 ad4ant14 ( ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ 𝑛 ∈ ( ℤ ‘ 1 ) ) ∧ ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
87 uzm1 ( 𝑛 ∈ ( ℤ ‘ 1 ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) ) )
88 87 adantl ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ 𝑛 ∈ ( ℤ ‘ 1 ) ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ( ℤ ‘ 1 ) ) )
89 67 86 88 mpjaodan ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ 𝑛 ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
90 simpr ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ ‘ 1 ) ) → ¬ 𝑛 ∈ ( ℤ ‘ 1 ) )
91 seqfn ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 𝑥 } ) ) Fn ( ℤ ‘ 1 ) )
92 12 91 ax-mp seq 1 ( + , ( ℕ × { 𝑥 } ) ) Fn ( ℤ ‘ 1 )
93 92 fndmi dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) = ( ℤ ‘ 1 )
94 93 eleq2i ( 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) ↔ 𝑛 ∈ ( ℤ ‘ 1 ) )
95 90 94 sylnibr ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ ‘ 1 ) ) → ¬ 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) )
96 ndmfv ( ¬ 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ∅ )
97 95 96 syl ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ∅ )
98 ssun2 ( ran 𝐼 ∪ { ∅ } ) ⊆ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) )
99 75 98 sstri { ∅ } ⊆ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) )
100 99 51 sstri { ∅ } ⊆ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
101 0ex ∅ ∈ V
102 101 snid ∅ ∈ { ∅ }
103 100 102 sselii ∅ ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
104 103 a1i ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ ‘ 1 ) ) → ∅ ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
105 97 104 eqeltrd ( ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
106 89 105 pm2.61dan ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
107 98 51 sstri ( ran 𝐼 ∪ { ∅ } ) ⊆ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
108 fvrn0 ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( ran 𝐼 ∪ { ∅ } )
109 107 108 sselii ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
110 109 a1i ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) → ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
111 106 110 ifcld ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) → if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
112 47 111 ifcld ( ( 𝑛 ∈ ℤ ∧ 𝑥𝐵 ) → if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) )
113 112 rgen2 𝑛 ∈ ℤ ∀ 𝑥𝐵 if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ ( { 0 } ∪ ( ( ran +𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) )
114 31 32 42 113 mpoexw ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ∈ V
115 29 30 114 fvmpt ( 𝐺 ∈ V → ( .g𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) )
116 fvprc ( ¬ 𝐺 ∈ V → ( .g𝐺 ) = ∅ )
117 eqid ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )
118 fvex ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ V
119 fvex ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ V
120 118 119 ifex if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ V
121 44 120 ifex if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ V
122 117 121 fnmpoi ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 )
123 fvprc ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ )
124 1 123 syl5eq ( ¬ 𝐺 ∈ V → 𝐵 = ∅ )
125 124 xpeq2d ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ( ℤ × ∅ ) )
126 xp0 ( ℤ × ∅ ) = ∅
127 125 126 eqtrdi ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ∅ )
128 127 fneq2d ( ¬ 𝐺 ∈ V → ( ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 ) ↔ ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ) )
129 122 128 mpbii ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ )
130 fn0 ( ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ↔ ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ )
131 129 130 sylib ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ )
132 116 131 eqtr4d ( ¬ 𝐺 ∈ V → ( .g𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) )
133 115 132 pm2.61i ( .g𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )
134 5 133 eqtri · = ( 𝑛 ∈ ℤ , 𝑥𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )