Step |
Hyp |
Ref |
Expression |
1 |
|
mulgval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgval.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
mulgval.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
mulgval.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
5 |
|
mulgval.t |
⊢ · = ( .g ‘ 𝐺 ) |
6 |
|
eqidd |
⊢ ( 𝑤 = 𝐺 → ℤ = ℤ ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 ) |
9 |
|
fveq2 |
⊢ ( 𝑤 = 𝐺 → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝐺 ) ) |
10 |
9 3
|
eqtr4di |
⊢ ( 𝑤 = 𝐺 → ( 0g ‘ 𝑤 ) = 0 ) |
11 |
|
fvex |
⊢ ( +g ‘ 𝑤 ) ∈ V |
12 |
|
1z |
⊢ 1 ∈ ℤ |
13 |
11 12
|
seqexw |
⊢ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V |
14 |
13
|
a1i |
⊢ ( 𝑤 = 𝐺 → seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ∈ V ) |
15 |
|
id |
⊢ ( 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) → 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝐺 ) ) |
17 |
16 2
|
eqtr4di |
⊢ ( 𝑤 = 𝐺 → ( +g ‘ 𝑤 ) = + ) |
18 |
17
|
seqeq2d |
⊢ ( 𝑤 = 𝐺 → seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) = seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
19 |
15 18
|
sylan9eqr |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑠 = seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
20 |
19
|
fveq1d |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠 ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ) |
21 |
|
simpl |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → 𝑤 = 𝐺 ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg ‘ 𝑤 ) = ( invg ‘ 𝐺 ) ) |
23 |
22 4
|
eqtr4di |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( invg ‘ 𝑤 ) = 𝐼 ) |
24 |
19
|
fveq1d |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( 𝑠 ‘ - 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) |
25 |
23 24
|
fveq12d |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) = ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) |
26 |
20 25
|
ifeq12d |
⊢ ( ( 𝑤 = 𝐺 ∧ 𝑠 = seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) ) → if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) |
27 |
14 26
|
csbied |
⊢ ( 𝑤 = 𝐺 → ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) = if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) |
28 |
10 27
|
ifeq12d |
⊢ ( 𝑤 = 𝐺 → if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) = if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
29 |
6 8 28
|
mpoeq123dv |
⊢ ( 𝑤 = 𝐺 → ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
30 |
|
df-mulg |
⊢ .g = ( 𝑤 ∈ V ↦ ( 𝑛 ∈ ℤ , 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝑤 ) , ⦋ seq 1 ( ( +g ‘ 𝑤 ) , ( ℕ × { 𝑥 } ) ) / 𝑠 ⦌ if ( 0 < 𝑛 , ( 𝑠 ‘ 𝑛 ) , ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) |
31 |
|
zex |
⊢ ℤ ∈ V |
32 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
33 |
|
snex |
⊢ { 0 } ∈ V |
34 |
2
|
fvexi |
⊢ + ∈ V |
35 |
34
|
rnex |
⊢ ran + ∈ V |
36 |
35 32
|
unex |
⊢ ( ran + ∪ 𝐵 ) ∈ V |
37 |
4
|
fvexi |
⊢ 𝐼 ∈ V |
38 |
37
|
rnex |
⊢ ran 𝐼 ∈ V |
39 |
|
p0ex |
⊢ { ∅ } ∈ V |
40 |
38 39
|
unex |
⊢ ( ran 𝐼 ∪ { ∅ } ) ∈ V |
41 |
36 40
|
unex |
⊢ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ∈ V |
42 |
33 41
|
unex |
⊢ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ∈ V |
43 |
|
ssun1 |
⊢ { 0 } ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
44 |
3
|
fvexi |
⊢ 0 ∈ V |
45 |
44
|
snid |
⊢ 0 ∈ { 0 } |
46 |
43 45
|
sselii |
⊢ 0 ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
47 |
46
|
a1i |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
48 |
|
ssun2 |
⊢ 𝐵 ⊆ ( ran + ∪ 𝐵 ) |
49 |
|
ssun1 |
⊢ ( ran + ∪ 𝐵 ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
50 |
48 49
|
sstri |
⊢ 𝐵 ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
51 |
|
ssun2 |
⊢ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
52 |
50 51
|
sstri |
⊢ 𝐵 ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ) |
54 |
53
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ) |
55 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) = ( ( ℕ × { 𝑥 } ) ‘ 1 ) ) |
56 |
12 55
|
ax-mp |
⊢ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) = ( ( ℕ × { 𝑥 } ) ‘ 1 ) |
57 |
|
1nn |
⊢ 1 ∈ ℕ |
58 |
|
vex |
⊢ 𝑥 ∈ V |
59 |
58
|
fvconst2 |
⊢ ( 1 ∈ ℕ → ( ( ℕ × { 𝑥 } ) ‘ 1 ) = 𝑥 ) |
60 |
57 59
|
ax-mp |
⊢ ( ( ℕ × { 𝑥 } ) ‘ 1 ) = 𝑥 |
61 |
60
|
eleq1i |
⊢ ( ( ( ℕ × { 𝑥 } ) ‘ 1 ) ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) |
62 |
61
|
biimpri |
⊢ ( 𝑥 ∈ 𝐵 → ( ( ℕ × { 𝑥 } ) ‘ 1 ) ∈ 𝐵 ) |
63 |
56 62
|
eqeltrid |
⊢ ( 𝑥 ∈ 𝐵 → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ∈ 𝐵 ) |
64 |
63
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 1 ) ∈ 𝐵 ) |
65 |
54 64
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ 𝐵 ) |
66 |
52 65
|
sselid |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
67 |
66
|
ad4ant24 |
⊢ ( ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑛 = 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
68 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
69 |
|
npcan1 |
⊢ ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
70 |
68 69
|
syl |
⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
71 |
70
|
fveq2d |
⊢ ( 𝑛 ∈ ℤ → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ) |
73 |
|
seqp1 |
⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ) |
74 |
|
ssun1 |
⊢ ran + ⊆ ( ran + ∪ 𝐵 ) |
75 |
|
ssun2 |
⊢ { ∅ } ⊆ ( ran 𝐼 ∪ { ∅ } ) |
76 |
|
unss12 |
⊢ ( ( ran + ⊆ ( ran + ∪ 𝐵 ) ∧ { ∅ } ⊆ ( ran 𝐼 ∪ { ∅ } ) ) → ( ran + ∪ { ∅ } ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
77 |
74 75 76
|
mp2an |
⊢ ( ran + ∪ { ∅ } ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
78 |
77 51
|
sstri |
⊢ ( ran + ∪ { ∅ } ) ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
79 |
|
df-ov |
⊢ ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) = ( + ‘ 〈 ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) , ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) 〉 ) |
80 |
|
fvrn0 |
⊢ ( + ‘ 〈 ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) , ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) 〉 ) ∈ ( ran + ∪ { ∅ } ) |
81 |
79 80
|
eqeltri |
⊢ ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( ran + ∪ { ∅ } ) |
82 |
78 81
|
sselii |
⊢ ( ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( 𝑛 − 1 ) ) + ( ( ℕ × { 𝑥 } ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
83 |
73 82
|
eqeltrdi |
⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ ( ( 𝑛 − 1 ) + 1 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
85 |
72 84
|
eqeltrrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
86 |
85
|
ad4ant14 |
⊢ ( ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
87 |
|
uzm1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
88 |
87
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
89 |
67 86 88
|
mpjaodan |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
90 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
91 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 𝑥 } ) ) Fn ( ℤ≥ ‘ 1 ) ) |
92 |
12 91
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 𝑥 } ) ) Fn ( ℤ≥ ‘ 1 ) |
93 |
92
|
fndmi |
⊢ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) = ( ℤ≥ ‘ 1 ) |
94 |
93
|
eleq2i |
⊢ ( 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
95 |
90 94
|
sylnibr |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ¬ 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) ) |
96 |
|
ndmfv |
⊢ ( ¬ 𝑛 ∈ dom seq 1 ( + , ( ℕ × { 𝑥 } ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ∅ ) |
97 |
95 96
|
syl |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ∅ ) |
98 |
|
ssun2 |
⊢ ( ran 𝐼 ∪ { ∅ } ) ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
99 |
75 98
|
sstri |
⊢ { ∅ } ⊆ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) |
100 |
99 51
|
sstri |
⊢ { ∅ } ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
101 |
|
0ex |
⊢ ∅ ∈ V |
102 |
101
|
snid |
⊢ ∅ ∈ { ∅ } |
103 |
100 102
|
sselii |
⊢ ∅ ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
104 |
103
|
a1i |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ∅ ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
105 |
97 104
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
106 |
89 105
|
pm2.61dan |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
107 |
98 51
|
sstri |
⊢ ( ran 𝐼 ∪ { ∅ } ) ⊆ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
108 |
|
fvrn0 |
⊢ ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( ran 𝐼 ∪ { ∅ } ) |
109 |
107 108
|
sselii |
⊢ ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
110 |
109
|
a1i |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
111 |
106 110
|
ifcld |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
112 |
47 111
|
ifcld |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) ) |
113 |
112
|
rgen2 |
⊢ ∀ 𝑛 ∈ ℤ ∀ 𝑥 ∈ 𝐵 if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ ( { 0 } ∪ ( ( ran + ∪ 𝐵 ) ∪ ( ran 𝐼 ∪ { ∅ } ) ) ) |
114 |
31 32 42 113
|
mpoexw |
⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ∈ V |
115 |
29 30 114
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
116 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ∅ ) |
117 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
118 |
|
fvex |
⊢ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ V |
119 |
|
fvex |
⊢ ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ V |
120 |
118 119
|
ifex |
⊢ if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ V |
121 |
44 120
|
ifex |
⊢ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ V |
122 |
117 121
|
fnmpoi |
⊢ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 ) |
123 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) |
124 |
1 123
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
125 |
124
|
xpeq2d |
⊢ ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ( ℤ × ∅ ) ) |
126 |
|
xp0 |
⊢ ( ℤ × ∅ ) = ∅ |
127 |
125 126
|
eqtrdi |
⊢ ( ¬ 𝐺 ∈ V → ( ℤ × 𝐵 ) = ∅ ) |
128 |
127
|
fneq2d |
⊢ ( ¬ 𝐺 ∈ V → ( ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ( ℤ × 𝐵 ) ↔ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ) ) |
129 |
122 128
|
mpbii |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ) |
130 |
|
fn0 |
⊢ ( ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) Fn ∅ ↔ ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ ) |
131 |
129 130
|
sylib |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) = ∅ ) |
132 |
116 131
|
eqtr4d |
⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) |
133 |
115 132
|
pm2.61i |
⊢ ( .g ‘ 𝐺 ) = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
134 |
5 133
|
eqtri |
⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |