| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgval.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgval.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | mulgval.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | mulgval.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 5 |  | mulgval.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝑤  =  𝐺  →  ℤ  =  ℤ ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑤  =  𝐺  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( 𝑤  =  𝐺  →  ( Base ‘ 𝑤 )  =  𝐵 ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑤  =  𝐺  →  ( 0g ‘ 𝑤 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 10 | 9 3 | eqtr4di | ⊢ ( 𝑤  =  𝐺  →  ( 0g ‘ 𝑤 )  =   0  ) | 
						
							| 11 |  | seqex | ⊢ seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑤  =  𝐺  →  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  ∈  V ) | 
						
							| 13 |  | id | ⊢ ( 𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  →  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑤  =  𝐺  →  ( +g ‘ 𝑤 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 15 | 14 2 | eqtr4di | ⊢ ( 𝑤  =  𝐺  →  ( +g ‘ 𝑤 )  =   +  ) | 
						
							| 16 | 15 | seqeq2d | ⊢ ( 𝑤  =  𝐺  →  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  =  seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ) | 
						
							| 17 | 13 16 | sylan9eqr | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  𝑠  =  seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ) | 
						
							| 18 | 17 | fveq1d | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  ( 𝑠 ‘ 𝑛 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  𝑤  =  𝐺 ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  ( invg ‘ 𝑤 )  =  ( invg ‘ 𝐺 ) ) | 
						
							| 21 | 20 4 | eqtr4di | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  ( invg ‘ 𝑤 )  =  𝐼 ) | 
						
							| 22 | 17 | fveq1d | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  ( 𝑠 ‘ - 𝑛 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) | 
						
							| 23 | 21 22 | fveq12d | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) )  =  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) | 
						
							| 24 | 18 23 | ifeq12d | ⊢ ( ( 𝑤  =  𝐺  ∧  𝑠  =  seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) ) )  →  if ( 0  <  𝑛 ,  ( 𝑠 ‘ 𝑛 ) ,  ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) )  =  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) | 
						
							| 25 | 12 24 | csbied | ⊢ ( 𝑤  =  𝐺  →  ⦋ seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  /  𝑠 ⦌ if ( 0  <  𝑛 ,  ( 𝑠 ‘ 𝑛 ) ,  ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) )  =  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) | 
						
							| 26 | 10 25 | ifeq12d | ⊢ ( 𝑤  =  𝐺  →  if ( 𝑛  =  0 ,  ( 0g ‘ 𝑤 ) ,  ⦋ seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  /  𝑠 ⦌ if ( 0  <  𝑛 ,  ( 𝑠 ‘ 𝑛 ) ,  ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) )  =  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) | 
						
							| 27 | 6 8 26 | mpoeq123dv | ⊢ ( 𝑤  =  𝐺  →  ( 𝑛  ∈  ℤ ,  𝑥  ∈  ( Base ‘ 𝑤 )  ↦  if ( 𝑛  =  0 ,  ( 0g ‘ 𝑤 ) ,  ⦋ seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  /  𝑠 ⦌ if ( 0  <  𝑛 ,  ( 𝑠 ‘ 𝑛 ) ,  ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) )  =  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) | 
						
							| 28 |  | df-mulg | ⊢ .g  =  ( 𝑤  ∈  V  ↦  ( 𝑛  ∈  ℤ ,  𝑥  ∈  ( Base ‘ 𝑤 )  ↦  if ( 𝑛  =  0 ,  ( 0g ‘ 𝑤 ) ,  ⦋ seq 1 ( ( +g ‘ 𝑤 ) ,  ( ℕ  ×  { 𝑥 } ) )  /  𝑠 ⦌ if ( 0  <  𝑛 ,  ( 𝑠 ‘ 𝑛 ) ,  ( ( invg ‘ 𝑤 ) ‘ ( 𝑠 ‘ - 𝑛 ) ) ) ) ) ) | 
						
							| 29 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 30 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 31 | 29 30 | mpoex | ⊢ ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  ∈  V | 
						
							| 32 | 27 28 31 | fvmpt | ⊢ ( 𝐺  ∈  V  →  ( .g ‘ 𝐺 )  =  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) | 
						
							| 33 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( .g ‘ 𝐺 )  =  ∅ ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  =  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) | 
						
							| 35 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 36 |  | fvex | ⊢ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 )  ∈  V | 
						
							| 37 |  | fvex | ⊢ ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) )  ∈  V | 
						
							| 38 | 36 37 | ifex | ⊢ if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) )  ∈  V | 
						
							| 39 | 35 38 | ifex | ⊢ if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) )  ∈  V | 
						
							| 40 | 34 39 | fnmpoi | ⊢ ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  Fn  ( ℤ  ×  𝐵 ) | 
						
							| 41 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( Base ‘ 𝐺 )  =  ∅ ) | 
						
							| 42 | 1 41 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 43 | 42 | xpeq2d | ⊢ ( ¬  𝐺  ∈  V  →  ( ℤ  ×  𝐵 )  =  ( ℤ  ×  ∅ ) ) | 
						
							| 44 |  | xp0 | ⊢ ( ℤ  ×  ∅ )  =  ∅ | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( ¬  𝐺  ∈  V  →  ( ℤ  ×  𝐵 )  =  ∅ ) | 
						
							| 46 | 45 | fneq2d | ⊢ ( ¬  𝐺  ∈  V  →  ( ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  Fn  ( ℤ  ×  𝐵 )  ↔  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  Fn  ∅ ) ) | 
						
							| 47 | 40 46 | mpbii | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  Fn  ∅ ) | 
						
							| 48 |  | fn0 | ⊢ ( ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  Fn  ∅  ↔  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  =  ∅ ) | 
						
							| 49 | 47 48 | sylib | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) )  =  ∅ ) | 
						
							| 50 | 33 49 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →  ( .g ‘ 𝐺 )  =  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) ) | 
						
							| 51 | 32 50 | pm2.61i | ⊢ ( .g ‘ 𝐺 )  =  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) | 
						
							| 52 | 5 51 | eqtri | ⊢  ·   =  ( 𝑛  ∈  ℤ ,  𝑥  ∈  𝐵  ↦  if ( 𝑛  =  0 ,   0  ,  if ( 0  <  𝑛 ,  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑛 ) ,  ( 𝐼 ‘ ( seq 1 (  +  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |