| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgmhm.m | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 6 | 1 2 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑀  ∈  ℤ  ∧  𝑥  ∈  𝐵 )  →  ( 𝑀  ·  𝑥 )  ∈  𝐵 ) | 
						
							| 7 | 4 6 | syl3an1 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ  ∧  𝑥  ∈  𝐵 )  →  ( 𝑀  ·  𝑥 )  ∈  𝐵 ) | 
						
							| 8 | 7 | 3expa | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑀  ·  𝑥 )  ∈  𝐵 ) | 
						
							| 9 | 8 | fmpttd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ↔  ( 𝑀  ∈  ℤ  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) ) | 
						
							| 11 | 1 2 3 | mulgdi | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑀  ∈  ℤ  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑀  ·  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( ( 𝑀  ·  𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝑧 ) ) ) | 
						
							| 12 | 10 11 | sylan2br | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑀  ∈  ℤ  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  ( 𝑀  ·  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( ( 𝑀  ·  𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝑧 ) ) ) | 
						
							| 13 | 12 | anassrs | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑀  ·  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( ( 𝑀  ·  𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝑧 ) ) ) | 
						
							| 14 | 1 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 15 | 14 | 3expb | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 16 | 5 15 | sylan | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( 𝑀  ·  𝑥 )  =  ( 𝑀  ·  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) )  =  ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) | 
						
							| 19 |  | ovex | ⊢ ( 𝑀  ·  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  V | 
						
							| 20 | 17 18 19 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( 𝑀  ·  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | 
						
							| 21 | 16 20 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( 𝑀  ·  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑀  ·  𝑥 )  =  ( 𝑀  ·  𝑦 ) ) | 
						
							| 23 |  | ovex | ⊢ ( 𝑀  ·  𝑦 )  ∈  V | 
						
							| 24 | 22 18 23 | fvmpt | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑦 )  =  ( 𝑀  ·  𝑦 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑀  ·  𝑥 )  =  ( 𝑀  ·  𝑧 ) ) | 
						
							| 26 |  | ovex | ⊢ ( 𝑀  ·  𝑧 )  ∈  V | 
						
							| 27 | 25 18 26 | fvmpt | ⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑧 )  =  ( 𝑀  ·  𝑧 ) ) | 
						
							| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑧 ) )  =  ( ( 𝑀  ·  𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝑧 ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑧 ) )  =  ( ( 𝑀  ·  𝑦 ) ( +g ‘ 𝐺 ) ( 𝑀  ·  𝑧 ) ) ) | 
						
							| 30 | 13 21 29 | 3eqtr4d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) ) ‘ 𝑧 ) ) ) | 
						
							| 31 | 1 1 3 3 5 5 9 30 | isghmd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑀  ∈  ℤ )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑀  ·  𝑥 ) )  ∈  ( 𝐺  GrpHom  𝐺 ) ) |