Step |
Hyp |
Ref |
Expression |
1 |
|
mulgghm2.m |
⊢ · = ( .g ‘ 𝑅 ) |
2 |
|
mulgghm2.f |
⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) |
3 |
|
mulgghm2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
simpl |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
5 |
|
zringgrp |
⊢ ℤring ∈ Grp |
6 |
4 5
|
jctil |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( ℤring ∈ Grp ∧ 𝑅 ∈ Grp ) ) |
7 |
3 1
|
mulgcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1 ∈ 𝐵 ) → ( 𝑛 · 1 ) ∈ 𝐵 ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ) ∧ 1 ∈ 𝐵 ) → ( 𝑛 · 1 ) ∈ 𝐵 ) |
9 |
8
|
an32s |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 1 ) ∈ 𝐵 ) |
10 |
9 2
|
fmptd |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → 𝐹 : ℤ ⟶ 𝐵 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
12 |
3 1 11
|
mulgdir |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
13 |
12
|
3exp2 |
⊢ ( 𝑅 ∈ Grp → ( 𝑥 ∈ ℤ → ( 𝑦 ∈ ℤ → ( 1 ∈ 𝐵 → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) ) ) |
14 |
13
|
imp42 |
⊢ ( ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 1 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
15 |
14
|
an32s |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 + 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
16 |
|
zaddcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
18 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑥 + 𝑦 ) → ( 𝑛 · 1 ) = ( ( 𝑥 + 𝑦 ) · 1 ) ) |
19 |
|
ovex |
⊢ ( ( 𝑥 + 𝑦 ) · 1 ) ∈ V |
20 |
18 2 19
|
fvmpt |
⊢ ( ( 𝑥 + 𝑦 ) ∈ ℤ → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 + 𝑦 ) · 1 ) ) |
21 |
17 20
|
syl |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 + 𝑦 ) · 1 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 1 ) = ( 𝑥 · 1 ) ) |
23 |
|
ovex |
⊢ ( 𝑥 · 1 ) ∈ V |
24 |
22 2 23
|
fvmpt |
⊢ ( 𝑥 ∈ ℤ → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 · 1 ) ) |
25 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 1 ) = ( 𝑦 · 1 ) ) |
26 |
|
ovex |
⊢ ( 𝑦 · 1 ) ∈ V |
27 |
25 2 26
|
fvmpt |
⊢ ( 𝑦 ∈ ℤ → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 1 ) ) |
28 |
24 27
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( +g ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
30 |
15 21 29
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
31 |
30
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
32 |
10 31
|
jca |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( 𝐹 : ℤ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
33 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
34 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
35 |
33 3 34 11
|
isghm |
⊢ ( 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ↔ ( ( ℤring ∈ Grp ∧ 𝑅 ∈ Grp ) ∧ ( 𝐹 : ℤ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
36 |
6 32 35
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |