| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgghm2.m | ⊢  ·   =  ( .g ‘ 𝑅 ) | 
						
							| 2 |  | mulgghm2.f | ⊢ 𝐹  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·   1  ) ) | 
						
							| 3 |  | mulgghm2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  →  𝑅  ∈  Grp ) | 
						
							| 5 |  | zringgrp | ⊢ ℤring  ∈  Grp | 
						
							| 6 | 4 5 | jctil | ⊢ ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  →  ( ℤring  ∈  Grp  ∧  𝑅  ∈  Grp ) ) | 
						
							| 7 | 3 1 | mulgcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑛  ∈  ℤ  ∧   1   ∈  𝐵 )  →  ( 𝑛  ·   1  )  ∈  𝐵 ) | 
						
							| 8 | 7 | 3expa | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  𝑛  ∈  ℤ )  ∧   1   ∈  𝐵 )  →  ( 𝑛  ·   1  )  ∈  𝐵 ) | 
						
							| 9 | 8 | an32s | ⊢ ( ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  ∧  𝑛  ∈  ℤ )  →  ( 𝑛  ·   1  )  ∈  𝐵 ) | 
						
							| 10 | 9 2 | fmptd | ⊢ ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  →  𝐹 : ℤ ⟶ 𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 12 | 3 1 11 | mulgdir | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧   1   ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  ·   1  )  =  ( ( 𝑥  ·   1  ) ( +g ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 13 | 12 | 3exp2 | ⊢ ( 𝑅  ∈  Grp  →  ( 𝑥  ∈  ℤ  →  ( 𝑦  ∈  ℤ  →  (  1   ∈  𝐵  →  ( ( 𝑥  +  𝑦 )  ·   1  )  =  ( ( 𝑥  ·   1  ) ( +g ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) ) ) ) | 
						
							| 14 | 13 | imp42 | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧   1   ∈  𝐵 )  →  ( ( 𝑥  +  𝑦 )  ·   1  )  =  ( ( 𝑥  ·   1  ) ( +g ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 15 | 14 | an32s | ⊢ ( ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑥  +  𝑦 )  ·   1  )  =  ( ( 𝑥  ·   1  ) ( +g ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 16 |  | zaddcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  +  𝑦 )  ∈  ℤ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℤ ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑛  =  ( 𝑥  +  𝑦 )  →  ( 𝑛  ·   1  )  =  ( ( 𝑥  +  𝑦 )  ·   1  ) ) | 
						
							| 19 |  | ovex | ⊢ ( ( 𝑥  +  𝑦 )  ·   1  )  ∈  V | 
						
							| 20 | 18 2 19 | fvmpt | ⊢ ( ( 𝑥  +  𝑦 )  ∈  ℤ  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑥  +  𝑦 )  ·   1  ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝑥  +  𝑦 )  ·   1  ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑛  =  𝑥  →  ( 𝑛  ·   1  )  =  ( 𝑥  ·   1  ) ) | 
						
							| 23 |  | ovex | ⊢ ( 𝑥  ·   1  )  ∈  V | 
						
							| 24 | 22 2 23 | fvmpt | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝑥  ·   1  ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑛  ·   1  )  =  ( 𝑦  ·   1  ) ) | 
						
							| 26 |  | ovex | ⊢ ( 𝑦  ·   1  )  ∈  V | 
						
							| 27 | 25 2 26 | fvmpt | ⊢ ( 𝑦  ∈  ℤ  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ·   1  ) ) | 
						
							| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝑥  ·   1  ) ( +g ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝑥  ·   1  ) ( +g ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 30 | 15 21 29 | 3eqtr4d | ⊢ ( ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 31 | 30 | ralrimivva | ⊢ ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  →  ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℤ ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 32 | 10 31 | jca | ⊢ ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  →  ( 𝐹 : ℤ ⟶ 𝐵  ∧  ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℤ ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 33 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 34 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 35 | 33 3 34 11 | isghm | ⊢ ( 𝐹  ∈  ( ℤring  GrpHom  𝑅 )  ↔  ( ( ℤring  ∈  Grp  ∧  𝑅  ∈  Grp )  ∧  ( 𝐹 : ℤ ⟶ 𝐵  ∧  ∀ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ℤ ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 36 | 6 32 35 | sylanbrc | ⊢ ( ( 𝑅  ∈  Grp  ∧   1   ∈  𝐵 )  →  𝐹  ∈  ( ℤring  GrpHom  𝑅 ) ) |