| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulginvcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulginvcom.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulginvcom.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 4 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 5 |
|
fvoveq1 |
⊢ ( 𝑥 = 0 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 8 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) |
| 11 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 14 |
|
fvoveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 17 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑥 · 𝑋 ) ) ↔ ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 20 |
19 3
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 21 |
20
|
eqcomd |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 23 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 24 |
1 19 2
|
mulg0 |
⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 26 |
1 19 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 0 · 𝑋 ) ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 29 |
22 25 28
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 0 · 𝑋 ) ) ) |
| 30 |
|
oveq2 |
⊢ ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 32 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 34 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑦 ∈ ℕ0 ) |
| 35 |
23
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 36 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 37 |
1 2 36
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 38 |
33 34 35 37
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 39 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 40 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 41 |
40
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑦 ∈ ℤ ) |
| 42 |
1 2 36
|
mulgaddcom |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 43 |
39 41 35 42
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 44 |
38 43
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 46 |
1 2 36
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 47 |
32 46
|
syl3an1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 48 |
47
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) ) |
| 49 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 50 |
40 49
|
syl3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 51 |
1 36 3
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 52 |
50 51
|
syld3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 53 |
48 52
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) ) |
| 55 |
31 45 54
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) |
| 56 |
55
|
3exp1 |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℕ0 → ( 𝑋 ∈ 𝐵 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) ) |
| 57 |
56
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) ) |
| 58 |
57
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( ( 𝑦 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( 𝑦 + 1 ) · 𝑋 ) ) ) ) ) |
| 59 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
| 60 |
23
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 61 |
1 2 3
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 62 |
60 61
|
syld3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 64 |
1 2 3
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
| 66 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) |
| 67 |
65 66
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · 𝑋 ) = ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 68 |
67
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 69 |
63 68
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) |
| 70 |
69
|
3exp1 |
⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
| 71 |
70
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑦 ∈ ℤ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) ) |
| 72 |
71
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℤ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) |
| 73 |
59 72
|
syl5 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ → ( ( 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑦 · 𝑋 ) ) → ( - 𝑦 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( - 𝑦 · 𝑋 ) ) ) ) ) |
| 74 |
6 9 12 15 18 29 58 73
|
zindd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 75 |
74
|
ex |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ ℤ → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) ) |
| 76 |
75
|
com23 |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) ) |
| 77 |
76
|
3imp |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |