Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnncl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnncl.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgneg.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
1z |
⊢ 1 ∈ ℤ |
5 |
1 2 3
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 1 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ ( 1 · 𝑋 ) ) ) |
6 |
4 5
|
mp3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ ( 1 · 𝑋 ) ) ) |
7 |
1 2
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 1 · 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |