| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgmodid.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgmodid.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | mulgmodid.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 5 |  | nnrp | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ+ ) | 
						
							| 6 |  | modval | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝑁  mod  𝑀 )  =  ( 𝑁  −  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) ) ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑁  mod  𝑀 )  =  ( 𝑁  −  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) ) ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( 𝑁  mod  𝑀 )  =  ( 𝑁  −  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑁  mod  𝑀 )  ·  𝑋 )  =  ( ( 𝑁  −  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) )  ·  𝑋 ) ) | 
						
							| 10 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 12 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℤ ) | 
						
							| 14 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 15 |  | nnne0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ≠  0 ) | 
						
							| 16 |  | redivcl | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑀  ≠  0 )  →  ( 𝑁  /  𝑀 )  ∈  ℝ ) | 
						
							| 17 | 4 14 15 16 | syl3an | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ  ∧  𝑀  ∈  ℕ )  →  ( 𝑁  /  𝑀 )  ∈  ℝ ) | 
						
							| 18 | 17 | 3anidm23 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑁  /  𝑀 )  ∈  ℝ ) | 
						
							| 19 | 18 | flcld | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 20 | 13 19 | zmulcld | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ∈  ℤ ) | 
						
							| 21 | 20 | zcnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ∈  ℂ ) | 
						
							| 22 | 11 21 | negsubd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑁  +  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) )  =  ( 𝑁  −  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) ) ) | 
						
							| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( 𝑁  +  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) )  =  ( 𝑁  −  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑁  +  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) )  ·  𝑋 )  =  ( ( 𝑁  −  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) )  ·  𝑋 ) ) | 
						
							| 25 |  | simp1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  𝐺  ∈  Grp ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  𝑁  ∈  ℤ ) | 
						
							| 28 | 13 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  𝑀  ∈  ℤ ) | 
						
							| 29 | 19 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 30 | 28 29 | zmulcld | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ∈  ℤ ) | 
						
							| 31 | 30 | znegcld | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ∈  ℤ ) | 
						
							| 32 |  | simpl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  )  →  𝑋  ∈  𝐵 ) | 
						
							| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 34 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 35 | 1 3 34 | mulgdir | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ∈  ℤ  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑁  +  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) )  ·  𝑋 )  =  ( ( 𝑁  ·  𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 ) ) ) | 
						
							| 36 | 25 27 31 33 35 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑁  +  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) )  ·  𝑋 )  =  ( ( 𝑁  ·  𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 ) ) ) | 
						
							| 37 | 9 24 36 | 3eqtr2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑁  mod  𝑀 )  ·  𝑋 )  =  ( ( 𝑁  ·  𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 ) ) ) | 
						
							| 38 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℂ ) | 
						
							| 40 | 19 | zcnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ∈  ℂ ) | 
						
							| 41 | 39 40 | mulneg2d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑀  ·  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  =  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( 𝑀  ·  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  =  - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑀  ·  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 )  =  ( - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 ) ) | 
						
							| 44 | 18 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( 𝑁  /  𝑀 )  ∈  ℝ ) | 
						
							| 45 | 44 | flcld | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 46 | 45 | znegcld | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ∈  ℤ ) | 
						
							| 47 | 1 3 | mulgassr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑀  ·  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 )  =  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·  ( 𝑀  ·  𝑋 ) ) ) | 
						
							| 48 | 25 46 28 33 47 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑀  ·  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 )  =  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·  ( 𝑀  ·  𝑋 ) ) ) | 
						
							| 49 |  | oveq2 | ⊢ ( ( 𝑀  ·  𝑋 )  =   0   →  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·  ( 𝑀  ·  𝑋 ) )  =  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·   0  ) ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  )  →  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·  ( 𝑀  ·  𝑋 ) )  =  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·   0  ) ) | 
						
							| 51 | 50 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·  ( 𝑀  ·  𝑋 ) )  =  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·   0  ) ) | 
						
							| 52 | 1 3 2 | mulgz | ⊢ ( ( 𝐺  ∈  Grp  ∧  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ∈  ℤ )  →  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·   0  )  =   0  ) | 
						
							| 53 | 25 46 52 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( - ( ⌊ ‘ ( 𝑁  /  𝑀 ) )  ·   0  )  =   0  ) | 
						
							| 54 | 48 51 53 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑀  ·  - ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 )  =   0  ) | 
						
							| 55 | 43 54 | eqtr3d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 )  =   0  ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑁  ·  𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀  ·  ( ⌊ ‘ ( 𝑁  /  𝑀 ) ) )  ·  𝑋 ) )  =  ( ( 𝑁  ·  𝑋 ) ( +g ‘ 𝐺 )  0  ) ) | 
						
							| 57 |  | id | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Grp ) | 
						
							| 58 | 1 3 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 59 | 57 26 32 58 | syl3an | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( 𝑁  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 60 | 1 34 2 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ·  𝑋 )  ∈  𝐵 )  →  ( ( 𝑁  ·  𝑋 ) ( +g ‘ 𝐺 )  0  )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 61 | 25 59 60 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑁  ·  𝑋 ) ( +g ‘ 𝐺 )  0  )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 62 | 37 56 61 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑀  ·  𝑋 )  =   0  ) )  →  ( ( 𝑁  mod  𝑀 )  ·  𝑋 )  =  ( 𝑁  ·  𝑋 ) ) |