Step |
Hyp |
Ref |
Expression |
1 |
|
mulgmodid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgmodid.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
mulgmodid.t |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
5 |
|
nnrp |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) |
6 |
|
modval |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑁 mod 𝑀 ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 mod 𝑀 ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 mod 𝑀 ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 mod 𝑀 ) · 𝑋 ) = ( ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) ) |
10 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
12 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
13 |
12
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
14 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
15 |
|
nnne0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) |
16 |
|
redivcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0 ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) |
17 |
4 14 15 16
|
syl3an |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) |
18 |
17
|
3anidm23 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) |
19 |
18
|
flcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
20 |
13 19
|
zmulcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ) |
21 |
20
|
zcnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℂ ) |
22 |
11 21
|
negsubd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
24 |
23
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) = ( ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) ) |
25 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝐺 ∈ Grp ) |
26 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝑁 ∈ ℤ ) |
28 |
13
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝑀 ∈ ℤ ) |
29 |
19
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
30 |
28 29
|
zmulcld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ) |
31 |
30
|
znegcld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ) |
32 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) → 𝑋 ∈ 𝐵 ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝑋 ∈ 𝐵 ) |
34 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
35 |
1 3 34
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) ) |
36 |
25 27 31 33 35
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) ) |
37 |
9 24 36
|
3eqtr2d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 mod 𝑀 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) ) |
38 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
39 |
38
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
40 |
19
|
zcnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℂ ) |
41 |
39 40
|
mulneg2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) = - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) = - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) |
43 |
42
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) |
44 |
18
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) |
45 |
44
|
flcld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
46 |
45
|
znegcld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
47 |
1 3
|
mulgassr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) ) |
48 |
25 46 28 33 47
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) ) |
49 |
|
oveq2 |
⊢ ( ( 𝑀 · 𝑋 ) = 0 → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) ) |
50 |
49
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) ) |
51 |
50
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) ) |
52 |
1 3 2
|
mulgz |
⊢ ( ( 𝐺 ∈ Grp ∧ - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) = 0 ) |
53 |
25 46 52
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) = 0 ) |
54 |
48 51 53
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = 0 ) |
55 |
43 54
|
eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = 0 ) |
56 |
55
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) 0 ) ) |
57 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
58 |
1 3
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
59 |
57 26 32 58
|
syl3an |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
60 |
1 34 2
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) 0 ) = ( 𝑁 · 𝑋 ) ) |
61 |
25 59 60
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) 0 ) = ( 𝑁 · 𝑋 ) ) |
62 |
37 56 61
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 mod 𝑀 ) · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |