Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnncl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnncl.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgneg.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
7 |
1 2 3
|
mulgnegnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → 𝐺 ∈ Grp ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
11 |
10 3
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
12 |
9 11
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
14 |
13
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ 𝐵 ) |
16 |
1 10 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
18 |
14 17
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
20 |
13
|
negeqd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → - 𝑁 = - 0 ) |
21 |
|
neg0 |
⊢ - 0 = 0 |
22 |
20 21
|
eqtrdi |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → - 𝑁 = 0 ) |
23 |
22
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( - 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
24 |
23 17
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( - 𝑁 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
25 |
12 19 24
|
3eqtr4rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
26 |
8 25
|
jaodan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
27 |
4 26
|
sylan2b |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
28 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐺 ∈ Grp ) |
29 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ ) |
30 |
29
|
nnzd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℤ ) |
31 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑋 ∈ 𝐵 ) |
32 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
33 |
28 30 31 32
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
34 |
1 3
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( - 𝑁 · 𝑋 ) ) |
35 |
28 33 34
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( - 𝑁 · 𝑋 ) ) |
36 |
1 2 3
|
mulgnegnn |
⊢ ( ( - 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
37 |
29 31 36
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
38 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) |
39 |
38
|
recnd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
40 |
39
|
negnegd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - - 𝑁 = 𝑁 ) |
41 |
40
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
42 |
37 41
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
43 |
42
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
44 |
35 43
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
45 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℤ ) |
46 |
|
elznn0nn |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
47 |
45 46
|
sylib |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
48 |
27 44 47
|
mpjaodan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |