| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgneg2.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgneg2.m | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgneg2.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | negeq | ⊢ ( 𝑥  =  0  →  - 𝑥  =  - 0 ) | 
						
							| 5 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( 𝑥  =  0  →  - 𝑥  =  0 ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑥  =  0  →  ( - 𝑥  ·  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( 0  ·  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( - 𝑥  ·  𝑋 )  =  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  ↔  ( 0  ·  𝑋 )  =  ( 0  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 10 |  | negeq | ⊢ ( 𝑥  =  𝑛  →  - 𝑥  =  - 𝑛 ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑥  =  𝑛  →  ( - 𝑥  ·  𝑋 )  =  ( - 𝑛  ·  𝑋 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝑥  =  𝑛  →  ( ( - 𝑥  ·  𝑋 )  =  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  ↔  ( - 𝑛  ·  𝑋 )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 14 |  | negeq | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  - 𝑥  =  - ( 𝑛  +  1 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( - 𝑥  ·  𝑋 )  =  ( - ( 𝑛  +  1 )  ·  𝑋 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( ( 𝑛  +  1 )  ·  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( - 𝑥  ·  𝑋 )  =  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  ↔  ( - ( 𝑛  +  1 )  ·  𝑋 )  =  ( ( 𝑛  +  1 )  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 18 |  | negeq | ⊢ ( 𝑥  =  - 𝑛  →  - 𝑥  =  - - 𝑛 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑥  =  - 𝑛  →  ( - 𝑥  ·  𝑋 )  =  ( - - 𝑛  ·  𝑋 ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑥  =  - 𝑛  →  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( - 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 21 | 19 20 | eqeq12d | ⊢ ( 𝑥  =  - 𝑛  →  ( ( - 𝑥  ·  𝑋 )  =  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  ↔  ( - - 𝑛  ·  𝑋 )  =  ( - 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 22 |  | negeq | ⊢ ( 𝑥  =  𝑁  →  - 𝑥  =  - 𝑁 ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑥  =  𝑁  →  ( - 𝑥  ·  𝑋 )  =  ( - 𝑁  ·  𝑋 ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( 𝑁  ·  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 25 | 23 24 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( - 𝑥  ·  𝑋 )  =  ( 𝑥  ·  ( 𝐼 ‘ 𝑋 ) )  ↔  ( - 𝑁  ·  𝑋 )  =  ( 𝑁  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 27 | 1 26 2 | mulg0 | ⊢ ( 𝑋  ∈  𝐵  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 29 | 1 3 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 30 | 1 26 2 | mulg0 | ⊢ ( ( 𝐼 ‘ 𝑋 )  ∈  𝐵  →  ( 0  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 0  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 32 | 28 31 | eqtr4d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 0  ·  𝑋 )  =  ( 0  ·  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( ( - 𝑛  ·  𝑋 )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  →  ( ( - 𝑛  ·  𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) )  =  ( ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 34 |  | nn0cn | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℂ ) | 
						
							| 36 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 37 |  | negdi | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( 𝑛  +  1 )  =  ( - 𝑛  +  - 1 ) ) | 
						
							| 38 | 35 36 37 | sylancl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  - ( 𝑛  +  1 )  =  ( - 𝑛  +  - 1 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( - ( 𝑛  +  1 )  ·  𝑋 )  =  ( ( - 𝑛  +  - 1 )  ·  𝑋 ) ) | 
						
							| 40 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝐺  ∈  Grp ) | 
						
							| 41 |  | nn0negz | ⊢ ( 𝑛  ∈  ℕ0  →  - 𝑛  ∈  ℤ ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  - 𝑛  ∈  ℤ ) | 
						
							| 43 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 44 |  | znegcl | ⊢ ( 1  ∈  ℤ  →  - 1  ∈  ℤ ) | 
						
							| 45 | 43 44 | mp1i | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  - 1  ∈  ℤ ) | 
						
							| 46 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 47 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 48 | 1 2 47 | mulgdir | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( - 𝑛  ∈  ℤ  ∧  - 1  ∈  ℤ  ∧  𝑋  ∈  𝐵 ) )  →  ( ( - 𝑛  +  - 1 )  ·  𝑋 )  =  ( ( - 𝑛  ·  𝑋 ) ( +g ‘ 𝐺 ) ( - 1  ·  𝑋 ) ) ) | 
						
							| 49 | 40 42 45 46 48 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 𝑛  +  - 1 )  ·  𝑋 )  =  ( ( - 𝑛  ·  𝑋 ) ( +g ‘ 𝐺 ) ( - 1  ·  𝑋 ) ) ) | 
						
							| 50 | 1 2 3 | mulgm1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( - 1  ·  𝑋 )  =  ( 𝐼 ‘ 𝑋 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( - 1  ·  𝑋 )  =  ( 𝐼 ‘ 𝑋 ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 𝑛  ·  𝑋 ) ( +g ‘ 𝐺 ) ( - 1  ·  𝑋 ) )  =  ( ( - 𝑛  ·  𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 53 | 39 49 52 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( - ( 𝑛  +  1 )  ·  𝑋 )  =  ( ( - 𝑛  ·  𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 54 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝐺  ∈  Mnd ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 57 | 29 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 58 | 1 2 47 | mulgnn0p1 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑛  ∈  ℕ0  ∧  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 )  →  ( ( 𝑛  +  1 )  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 59 | 55 56 57 58 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  +  1 )  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 60 | 53 59 | eqeq12d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( - ( 𝑛  +  1 )  ·  𝑋 )  =  ( ( 𝑛  +  1 )  ·  ( 𝐼 ‘ 𝑋 ) )  ↔  ( ( - 𝑛  ·  𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) )  =  ( ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 61 | 33 60 | imbitrrid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( - 𝑛  ·  𝑋 )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  →  ( - ( 𝑛  +  1 )  ·  𝑋 )  =  ( ( 𝑛  +  1 )  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 62 | 61 | ex | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  →  ( ( - 𝑛  ·  𝑋 )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  →  ( - ( 𝑛  +  1 )  ·  𝑋 )  =  ( ( 𝑛  +  1 )  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( ( - 𝑛  ·  𝑋 )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  →  ( 𝐼 ‘ ( - 𝑛  ·  𝑋 ) )  =  ( 𝐼 ‘ ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 64 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ )  →  𝐺  ∈  Grp ) | 
						
							| 65 |  | nnnegz | ⊢ ( 𝑛  ∈  ℕ  →  - 𝑛  ∈  ℤ ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ )  →  - 𝑛  ∈  ℤ ) | 
						
							| 67 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ )  →  𝑋  ∈  𝐵 ) | 
						
							| 68 | 1 2 3 | mulgneg | ⊢ ( ( 𝐺  ∈  Grp  ∧  - 𝑛  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( - - 𝑛  ·  𝑋 )  =  ( 𝐼 ‘ ( - 𝑛  ·  𝑋 ) ) ) | 
						
							| 69 | 64 66 67 68 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ )  →  ( - - 𝑛  ·  𝑋 )  =  ( 𝐼 ‘ ( - 𝑛  ·  𝑋 ) ) ) | 
						
							| 70 |  | id | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ ) | 
						
							| 71 | 1 2 3 | mulgnegnn | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 )  →  ( - 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( 𝐼 ‘ ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 72 | 70 29 71 | syl2anr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ )  →  ( - 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  =  ( 𝐼 ‘ ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 73 | 69 72 | eqeq12d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ )  →  ( ( - - 𝑛  ·  𝑋 )  =  ( - 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  ↔  ( 𝐼 ‘ ( - 𝑛  ·  𝑋 ) )  =  ( 𝐼 ‘ ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) ) | 
						
							| 74 | 63 73 | imbitrrid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℕ )  →  ( ( - 𝑛  ·  𝑋 )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  →  ( - - 𝑛  ·  𝑋 )  =  ( - 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 75 | 74 | ex | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ  →  ( ( - 𝑛  ·  𝑋 )  =  ( 𝑛  ·  ( 𝐼 ‘ 𝑋 ) )  →  ( - - 𝑛  ·  𝑋 )  =  ( - 𝑛  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) ) | 
						
							| 76 | 9 13 17 21 25 32 62 75 | zindd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ∈  ℤ  →  ( - 𝑁  ·  𝑋 )  =  ( 𝑁  ·  ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 77 | 76 | 3impia | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑁  ∈  ℤ )  →  ( - 𝑁  ·  𝑋 )  =  ( 𝑁  ·  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 78 | 77 | 3com23 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( - 𝑁  ·  𝑋 )  =  ( 𝑁  ·  ( 𝐼 ‘ 𝑋 ) ) ) |