Metamath Proof Explorer


Theorem mulgnegneg

Description: The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses mulgnncl.b 𝐵 = ( Base ‘ 𝐺 )
mulgnncl.t · = ( .g𝐺 )
mulgneg.i 𝐼 = ( invg𝐺 )
Assertion mulgnegneg ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 mulgnncl.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgnncl.t · = ( .g𝐺 )
3 mulgneg.i 𝐼 = ( invg𝐺 )
4 1 2 3 mulgneg ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) )
5 4 fveq2d ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) )
6 simp1 ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → 𝐺 ∈ Grp )
7 1 2 mulgcl ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 )
8 1 3 grpinvinv ( ( 𝐺 ∈ Grp ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) )
9 6 7 8 syl2anc ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) )
10 5 9 eqtrd ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) )