Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnncl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnncl.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgneg.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
1 2 3
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
5 |
4
|
fveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) ) |
6 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
7 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
8 |
1 3
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · 𝑋 ) ) |
10 |
5 9
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |