Step |
Hyp |
Ref |
Expression |
1 |
|
mulg1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulg1.m |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgnegnn.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
5 |
4
|
negnegd |
⊢ ( 𝑁 ∈ ℕ → - - 𝑁 = 𝑁 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → - - 𝑁 = 𝑁 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) ) |
9 |
|
nnnegz |
⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
12 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
13 |
1 10 11 3 2 12
|
mulgval |
⊢ ( ( - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) ) |
14 |
9 13
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) ) |
15 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
16 |
|
negeq0 |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
17 |
16
|
necon3abid |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) ) |
18 |
4 17
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) ) |
19 |
15 18
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ¬ - 𝑁 = 0 ) |
20 |
19
|
iffalsed |
⊢ ( 𝑁 ∈ ℕ → if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) |
21 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
22 |
21
|
renegcld |
⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℝ ) |
23 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
24 |
21
|
lt0neg2d |
⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 ↔ - 𝑁 < 0 ) ) |
25 |
23 24
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → - 𝑁 < 0 ) |
26 |
|
0re |
⊢ 0 ∈ ℝ |
27 |
|
ltnsym |
⊢ ( ( - 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) |
28 |
26 27
|
mpan2 |
⊢ ( - 𝑁 ∈ ℝ → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) |
29 |
22 25 28
|
sylc |
⊢ ( 𝑁 ∈ ℕ → ¬ 0 < - 𝑁 ) |
30 |
29
|
iffalsed |
⊢ ( 𝑁 ∈ ℕ → if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
31 |
20 30
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
33 |
14 32
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
34 |
1 10 2 12
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
35 |
34
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) ) |
36 |
8 33 35
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |