Metamath Proof Explorer


Theorem mulgnegnn

Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg1.b 𝐵 = ( Base ‘ 𝐺 )
mulg1.m · = ( .g𝐺 )
mulgnegnn.i 𝐼 = ( invg𝐺 )
Assertion mulgnegnn ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 mulg1.b 𝐵 = ( Base ‘ 𝐺 )
2 mulg1.m · = ( .g𝐺 )
3 mulgnegnn.i 𝐼 = ( invg𝐺 )
4 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
5 4 negnegd ( 𝑁 ∈ ℕ → - - 𝑁 = 𝑁 )
6 5 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → - - 𝑁 = 𝑁 )
7 6 fveq2d ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) )
8 7 fveq2d ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) )
9 nnnegz ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ )
10 eqid ( +g𝐺 ) = ( +g𝐺 )
11 eqid ( 0g𝐺 ) = ( 0g𝐺 )
12 eqid seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) )
13 1 10 11 3 2 12 mulgval ( ( - 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( - 𝑁 · 𝑋 ) = if ( - 𝑁 = 0 , ( 0g𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) )
14 9 13 sylan ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( - 𝑁 · 𝑋 ) = if ( - 𝑁 = 0 , ( 0g𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) )
15 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
16 negeq0 ( 𝑁 ∈ ℂ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) )
17 16 necon3abid ( 𝑁 ∈ ℂ → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) )
18 4 17 syl ( 𝑁 ∈ ℕ → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) )
19 15 18 mpbid ( 𝑁 ∈ ℕ → ¬ - 𝑁 = 0 )
20 19 iffalsed ( 𝑁 ∈ ℕ → if ( - 𝑁 = 0 , ( 0g𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = if ( 0 < - 𝑁 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) )
21 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
22 21 renegcld ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℝ )
23 nngt0 ( 𝑁 ∈ ℕ → 0 < 𝑁 )
24 21 lt0neg2d ( 𝑁 ∈ ℕ → ( 0 < 𝑁 ↔ - 𝑁 < 0 ) )
25 23 24 mpbid ( 𝑁 ∈ ℕ → - 𝑁 < 0 )
26 0re 0 ∈ ℝ
27 ltnsym ( ( - 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) )
28 26 27 mpan2 ( - 𝑁 ∈ ℝ → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) )
29 22 25 28 sylc ( 𝑁 ∈ ℕ → ¬ 0 < - 𝑁 )
30 29 iffalsed ( 𝑁 ∈ ℕ → if ( 0 < - 𝑁 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) )
31 20 30 eqtrd ( 𝑁 ∈ ℕ → if ( - 𝑁 = 0 , ( 0g𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) )
32 31 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → if ( - 𝑁 = 0 , ( 0g𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) )
33 14 32 eqtrd ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) )
34 1 10 2 12 mulgnn ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) )
35 34 fveq2d ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) )
36 8 33 35 3eqtr4d ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) )