Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnn.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
mulgnn.t |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
mulgnn.s |
⊢ 𝑆 = seq 1 ( + , ( ℕ × { 𝑋 } ) ) |
5 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
8 |
1 2 6 7 3 4
|
mulgval |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |
9 |
5 8
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |
10 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
11 |
10
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
12 |
11
|
iffalsed |
⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) = if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) |
13 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
14 |
13
|
iftrued |
⊢ ( 𝑁 ∈ ℕ → if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
15 |
12 14
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
17 |
9 16
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝑆 ‘ 𝑁 ) ) |