Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgnn0cl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | id | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Mnd ) | |
| 5 | ssidd | ⊢ ( 𝐺 ∈ Mnd → 𝐵 ⊆ 𝐵 ) | |
| 6 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 7 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 8 | 1 7 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 9 | 1 2 3 4 5 6 7 8 | mulgnn0subcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |