Step |
Hyp |
Ref |
Expression |
1 |
|
mulgdi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgdi.m |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgdi.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝐺 ∈ Mnd ) |
6 |
1 3
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
7 |
6
|
3expb |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
8 |
5 7
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
9 |
1 3
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
10 |
9
|
3expb |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
11 |
10
|
ad4ant14 |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
12 |
1 3
|
mndass |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
13 |
5 12
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
16 |
14 15
|
eleqtrdi |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
17 |
|
simplr2 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
18 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → 𝑘 ∈ ℕ ) |
19 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) = 𝑋 ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) = 𝑋 ) |
21 |
17
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → 𝑋 ∈ 𝐵 ) |
22 |
20 21
|
eqeltrd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) ∈ 𝐵 ) |
23 |
|
simplr3 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → 𝑌 ∈ 𝐵 ) |
24 |
|
fvconst2g |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) = 𝑌 ) |
25 |
23 18 24
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) = 𝑌 ) |
26 |
23
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → 𝑌 ∈ 𝐵 ) |
27 |
25 26
|
eqeltrd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) ∈ 𝐵 ) |
28 |
1 3
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
29 |
5 17 23 28
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
30 |
|
fvconst2g |
⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { ( 𝑋 + 𝑌 ) } ) ‘ 𝑘 ) = ( 𝑋 + 𝑌 ) ) |
31 |
29 18 30
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { ( 𝑋 + 𝑌 ) } ) ‘ 𝑘 ) = ( 𝑋 + 𝑌 ) ) |
32 |
20 25
|
oveq12d |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) + ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) ) = ( 𝑋 + 𝑌 ) ) |
33 |
31 32
|
eqtr4d |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ℕ × { ( 𝑋 + 𝑌 ) } ) ‘ 𝑘 ) = ( ( ( ℕ × { 𝑋 } ) ‘ 𝑘 ) + ( ( ℕ × { 𝑌 } ) ‘ 𝑘 ) ) ) |
34 |
8 11 13 16 22 27 33
|
seqcaopr |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) ‘ 𝑀 ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) + ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) ) |
35 |
|
eqid |
⊢ seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) = seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) |
36 |
1 3 2 35
|
mulgnn |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) ‘ 𝑀 ) ) |
37 |
14 29 36
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( seq 1 ( + , ( ℕ × { ( 𝑋 + 𝑌 ) } ) ) ‘ 𝑀 ) ) |
38 |
|
eqid |
⊢ seq 1 ( + , ( ℕ × { 𝑋 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) |
39 |
1 3 2 38
|
mulgnn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) ) |
40 |
14 17 39
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) ) |
41 |
|
eqid |
⊢ seq 1 ( + , ( ℕ × { 𝑌 } ) ) = seq 1 ( + , ( ℕ × { 𝑌 } ) ) |
42 |
1 3 2 41
|
mulgnn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 · 𝑌 ) = ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) |
43 |
14 23 42
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · 𝑌 ) = ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) |
44 |
40 43
|
oveq12d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) + ( seq 1 ( + , ( ℕ × { 𝑌 } ) ) ‘ 𝑀 ) ) ) |
45 |
34 37 44
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
46 |
4
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝐺 ∈ Mnd ) |
47 |
|
simplr2 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑋 ∈ 𝐵 ) |
48 |
|
simplr3 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑌 ∈ 𝐵 ) |
49 |
46 47 48 28
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
50 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
51 |
1 50 2
|
mulg0 |
⊢ ( ( 𝑋 + 𝑌 ) ∈ 𝐵 → ( 0 · ( 𝑋 + 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
52 |
49 51
|
syl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · ( 𝑋 + 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
53 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
54 |
53 50
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
55 |
53 3 50
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
56 |
4 54 55
|
syl2anc2 |
⊢ ( 𝐺 ∈ CMnd → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
58 |
52 57
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · ( 𝑋 + 𝑌 ) ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) |
59 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
60 |
59
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( 0 · ( 𝑋 + 𝑌 ) ) ) |
61 |
59
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑋 ) = ( 0 · 𝑋 ) ) |
62 |
1 50 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
63 |
47 62
|
syl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
64 |
61 63
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
65 |
59
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑌 ) = ( 0 · 𝑌 ) ) |
66 |
1 50 2
|
mulg0 |
⊢ ( 𝑌 ∈ 𝐵 → ( 0 · 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
67 |
48 66
|
syl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
68 |
65 67
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
69 |
64 68
|
oveq12d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) |
70 |
58 60 69
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
71 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑀 ∈ ℕ0 ) |
72 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
73 |
71 72
|
sylib |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
74 |
45 70 73
|
mpjaodan |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |