| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgdi.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgdi.m | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgdi.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  𝐺  ∈  Mnd ) | 
						
							| 6 | 1 3 | mndcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 7 | 6 | 3expb | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 8 | 5 7 | sylan | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 9 | 1 3 | cmncom | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 10 | 9 | 3expb | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 11 | 10 | ad4ant14 | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 12 | 1 3 | mndass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 13 | 5 12 | sylan | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 15 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 16 | 14 15 | eleqtrdi | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 17 |  | simplr2 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  𝑋  ∈  𝐵 ) | 
						
							| 18 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑀 )  →  𝑘  ∈  ℕ ) | 
						
							| 19 |  | fvconst2g | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑘 )  =  𝑋 ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑘 )  =  𝑋 ) | 
						
							| 21 | 17 | adantr | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 22 | 20 21 | eqeltrd | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑘 )  ∈  𝐵 ) | 
						
							| 23 |  | simplr3 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  𝑌  ∈  𝐵 ) | 
						
							| 24 |  | fvconst2g | ⊢ ( ( 𝑌  ∈  𝐵  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 𝑌 } ) ‘ 𝑘 )  =  𝑌 ) | 
						
							| 25 | 23 18 24 | syl2an | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( ℕ  ×  { 𝑌 } ) ‘ 𝑘 )  =  𝑌 ) | 
						
							| 26 | 23 | adantr | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 27 | 25 26 | eqeltrd | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( ℕ  ×  { 𝑌 } ) ‘ 𝑘 )  ∈  𝐵 ) | 
						
							| 28 | 1 3 | mndcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 29 | 5 17 23 28 | syl3anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 30 |  | fvconst2g | ⊢ ( ( ( 𝑋  +  𝑌 )  ∈  𝐵  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) ‘ 𝑘 )  =  ( 𝑋  +  𝑌 ) ) | 
						
							| 31 | 29 18 30 | syl2an | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) ‘ 𝑘 )  =  ( 𝑋  +  𝑌 ) ) | 
						
							| 32 | 20 25 | oveq12d | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑘 )  +  ( ( ℕ  ×  { 𝑌 } ) ‘ 𝑘 ) )  =  ( 𝑋  +  𝑌 ) ) | 
						
							| 33 | 31 32 | eqtr4d | ⊢ ( ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑘 )  +  ( ( ℕ  ×  { 𝑌 } ) ‘ 𝑘 ) ) ) | 
						
							| 34 | 8 11 13 16 22 27 33 | seqcaopr | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) ) ‘ 𝑀 )  =  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑀 )  +  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑌 } ) ) ‘ 𝑀 ) ) ) | 
						
							| 35 |  | eqid | ⊢ seq 1 (  +  ,  ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) )  =  seq 1 (  +  ,  ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) ) | 
						
							| 36 | 1 3 2 35 | mulgnn | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑋  +  𝑌 )  ∈  𝐵 )  →  ( 𝑀  ·  ( 𝑋  +  𝑌 ) )  =  ( seq 1 (  +  ,  ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) ) ‘ 𝑀 ) ) | 
						
							| 37 | 14 29 36 | syl2anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( 𝑀  ·  ( 𝑋  +  𝑌 ) )  =  ( seq 1 (  +  ,  ( ℕ  ×  { ( 𝑋  +  𝑌 ) } ) ) ‘ 𝑀 ) ) | 
						
							| 38 |  | eqid | ⊢ seq 1 (  +  ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 (  +  ,  ( ℕ  ×  { 𝑋 } ) ) | 
						
							| 39 | 1 3 2 38 | mulgnn | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑀  ·  𝑋 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑀 ) ) | 
						
							| 40 | 14 17 39 | syl2anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( 𝑀  ·  𝑋 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑀 ) ) | 
						
							| 41 |  | eqid | ⊢ seq 1 (  +  ,  ( ℕ  ×  { 𝑌 } ) )  =  seq 1 (  +  ,  ( ℕ  ×  { 𝑌 } ) ) | 
						
							| 42 | 1 3 2 41 | mulgnn | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀  ·  𝑌 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑌 } ) ) ‘ 𝑀 ) ) | 
						
							| 43 | 14 23 42 | syl2anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( 𝑀  ·  𝑌 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑌 } ) ) ‘ 𝑀 ) ) | 
						
							| 44 | 40 43 | oveq12d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑀  ·  𝑋 )  +  ( 𝑀  ·  𝑌 ) )  =  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑀 )  +  ( seq 1 (  +  ,  ( ℕ  ×  { 𝑌 } ) ) ‘ 𝑀 ) ) ) | 
						
							| 45 | 34 37 44 | 3eqtr4d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( 𝑀  ·  ( 𝑋  +  𝑌 ) )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑀  ·  𝑌 ) ) ) | 
						
							| 46 | 4 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝐺  ∈  Mnd ) | 
						
							| 47 |  | simplr2 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 48 |  | simplr3 | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝑌  ∈  𝐵 ) | 
						
							| 49 | 46 47 48 28 | syl3anc | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 50 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 51 | 1 50 2 | mulg0 | ⊢ ( ( 𝑋  +  𝑌 )  ∈  𝐵  →  ( 0  ·  ( 𝑋  +  𝑌 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 52 | 49 51 | syl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 0  ·  ( 𝑋  +  𝑌 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 53 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 54 | 53 50 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 55 | 53 3 50 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 56 | 4 54 55 | syl2anc2 | ⊢ ( 𝐺  ∈  CMnd  →  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 58 | 52 57 | eqtr4d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 0  ·  ( 𝑋  +  𝑌 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝑀  =  0 ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  ( 𝑋  +  𝑌 ) )  =  ( 0  ·  ( 𝑋  +  𝑌 ) ) ) | 
						
							| 61 | 59 | oveq1d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 62 | 1 50 2 | mulg0 | ⊢ ( 𝑋  ∈  𝐵  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 63 | 47 62 | syl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 64 | 61 63 | eqtrd | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 65 | 59 | oveq1d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  𝑌 )  =  ( 0  ·  𝑌 ) ) | 
						
							| 66 | 1 50 2 | mulg0 | ⊢ ( 𝑌  ∈  𝐵  →  ( 0  ·  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 67 | 48 66 | syl | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 0  ·  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 68 | 65 67 | eqtrd | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 69 | 64 68 | oveq12d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( ( 𝑀  ·  𝑋 )  +  ( 𝑀  ·  𝑌 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 70 | 58 60 69 | 3eqtr4d | ⊢ ( ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  ( 𝑋  +  𝑌 ) )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑀  ·  𝑌 ) ) ) | 
						
							| 71 |  | simpr1 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 72 |  | elnn0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 ) ) | 
						
							| 73 | 71 72 | sylib | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 ) ) | 
						
							| 74 | 45 70 73 | mpjaodan | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑀  ·  ( 𝑋  +  𝑌 ) )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑀  ·  𝑌 ) ) ) |