| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnndir.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnndir.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgnndir.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | mndsgrp | ⊢ ( 𝐺  ∈  Mnd  →  𝐺  ∈  Smgrp ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  →  𝐺  ∈  Smgrp ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  ∈  ℕ )  →  𝐺  ∈  Smgrp ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | simpr3 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  ∈  ℕ )  →  𝑋  ∈  𝐵 ) | 
						
							| 11 | 1 2 3 | mulgnndir | ⊢ ( ( 𝐺  ∈  Smgrp  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 12 | 6 7 8 10 11 | syl13anc | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 13 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  𝐺  ∈  Mnd ) | 
						
							| 14 |  | simpr1 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 16 |  | simplr3 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 17 | 1 2 13 15 16 | mulgnn0cld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( 𝑀  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 18 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 19 | 1 3 18 | mndrid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ·  𝑋 )  ∈  𝐵 )  →  ( ( 𝑀  ·  𝑋 )  +  ( 0g ‘ 𝐺 ) )  =  ( 𝑀  ·  𝑋 ) ) | 
						
							| 20 | 13 17 19 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( ( 𝑀  ·  𝑋 )  +  ( 0g ‘ 𝐺 ) )  =  ( 𝑀  ·  𝑋 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( 𝑁  ·  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 23 | 1 18 2 | mulg0 | ⊢ ( 𝑋  ∈  𝐵  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 24 | 16 23 | syl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( 𝑁  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) )  =  ( ( 𝑀  ·  𝑋 )  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 27 | 21 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( 𝑀  +  𝑁 )  =  ( 𝑀  +  0 ) ) | 
						
							| 28 | 15 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  𝑀  ∈  ℂ ) | 
						
							| 29 | 28 | addridd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( 𝑀  +  0 )  =  𝑀 ) | 
						
							| 30 | 27 29 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( 𝑀  +  𝑁 )  =  𝑀 ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( 𝑀  ·  𝑋 ) ) | 
						
							| 32 | 20 26 31 | 3eqtr4rd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑁  =  0 )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 33 | 32 | adantlr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  =  0 )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 34 |  | simpr2 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 35 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 36 | 34 35 | sylib | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  →  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 38 | 12 33 37 | mpjaodan | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 39 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝐺  ∈  Mnd ) | 
						
							| 40 |  | simplr2 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 41 |  | simplr3 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 42 | 1 2 39 40 41 | mulgnn0cld | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑁  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 43 | 1 3 18 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑁  ·  𝑋 )  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  +  ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 44 | 39 42 43 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( ( 0g ‘ 𝐺 )  +  ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝑀  =  0 ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 47 | 41 23 | syl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 48 | 46 47 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 50 | 45 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  +  𝑁 )  =  ( 0  +  𝑁 ) ) | 
						
							| 51 | 40 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  𝑁  ∈  ℂ ) | 
						
							| 52 | 51 | addlidd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 0  +  𝑁 )  =  𝑁 ) | 
						
							| 53 | 50 52 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( 𝑀  +  𝑁 )  =  𝑁 ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 55 | 44 49 54 | 3eqtr4rd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  ∧  𝑀  =  0 )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 56 |  | elnn0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 ) ) | 
						
							| 57 | 14 56 | sylib | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  →  ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 ) ) | 
						
							| 58 | 38 55 57 | mpjaodan | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑀  +  𝑁 )  ·  𝑋 )  =  ( ( 𝑀  ·  𝑋 )  +  ( 𝑁  ·  𝑋 ) ) ) |