| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnngsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnngsum.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgnngsum.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 1 ... 𝑁 )  ↦  𝑋 ) | 
						
							| 4 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 5 | 1 2 3 | mulgnngsum | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑋  ∈  𝐵  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  ·  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 9 | 1 8 2 | mulg0 | ⊢ ( 𝑋  ∈  𝐵  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 10 | 7 9 | sylan9eq | ⊢ ( ( 𝑁  =  0  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 1 ... 𝑁 )  =  ( 1 ... 0 ) ) | 
						
							| 12 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( 1 ... 𝑁 )  =  ∅ ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝑁  =  0  →  𝑋  =  𝑋 ) | 
						
							| 15 | 13 14 | mpteq12dv | ⊢ ( 𝑁  =  0  →  ( 𝑥  ∈  ( 1 ... 𝑁 )  ↦  𝑋 )  =  ( 𝑥  ∈  ∅  ↦  𝑋 ) ) | 
						
							| 16 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  𝑋 )  =  ∅ | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( 𝑥  ∈  ( 1 ... 𝑁 )  ↦  𝑋 )  =  ∅ ) | 
						
							| 18 | 3 17 | eqtrid | ⊢ ( 𝑁  =  0  →  𝐹  =  ∅ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑁  =  0  ∧  𝑋  ∈  𝐵 )  →  𝐹  =  ∅ ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝑁  =  0  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ∅ ) ) | 
						
							| 21 | 8 | gsum0 | ⊢ ( 𝐺  Σg  ∅ )  =  ( 0g ‘ 𝐺 ) | 
						
							| 22 | 20 21 | eqtrdi | ⊢ ( ( 𝑁  =  0  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺  Σg  𝐹 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 23 | 10 22 | eqtr4d | ⊢ ( ( 𝑁  =  0  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝑁  =  0  →  ( 𝑋  ∈  𝐵  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 25 | 6 24 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( 𝑋  ∈  𝐵  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 26 | 4 25 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑋  ∈  𝐵  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) |