Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnngsum.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnngsum.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgnngsum.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) |
4 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
5 |
1 2 3
|
mulgnngsum |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |
6 |
5
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
9 |
1 8 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
10 |
7 9
|
sylan9eq |
⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) |
12 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
14 |
|
eqidd |
⊢ ( 𝑁 = 0 → 𝑋 = 𝑋 ) |
15 |
13 14
|
mpteq12dv |
⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) = ( 𝑥 ∈ ∅ ↦ 𝑋 ) ) |
16 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ 𝑋 ) = ∅ |
17 |
15 16
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) = ∅ ) |
18 |
3 17
|
eqtrid |
⊢ ( 𝑁 = 0 → 𝐹 = ∅ ) |
19 |
18
|
adantr |
⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 = ∅ ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ∅ ) ) |
21 |
8
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
22 |
20 21
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
23 |
10 22
|
eqtr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |
24 |
23
|
ex |
⊢ ( 𝑁 = 0 → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
25 |
6 24
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
26 |
4 25
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
27 |
26
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |