Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnn0p1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnn0p1.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgnn0p1.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
5 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
6 |
1 2 3
|
mulgnnp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
9 |
1 3 8
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
10 |
1 8 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
12 |
11
|
oveq1d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
13 |
1 2
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
15 |
9 12 14
|
3eqtr4rd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = ( 0 + 1 ) ) |
18 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
19 |
17 18
|
eqtr4di |
⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = 1 ) |
20 |
19
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 + 1 ) · 𝑋 ) = ( 1 · 𝑋 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑁 = 0 → ( ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ↔ ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) ) |
24 |
16 23
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 = 0 → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
26 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℕ0 ) |
27 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
28 |
26 27
|
sylib |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
29 |
7 25 28
|
mpjaodan |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |