| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnn0p1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgnn0p1.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgnn0p1.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 5 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
| 6 |
1 2 3
|
mulgnnp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 9 |
1 3 8
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 10 |
1 8 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
| 13 |
1 2
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 15 |
9 12 14
|
3eqtr4rd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = ( 0 + 1 ) ) |
| 18 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 19 |
17 18
|
eqtr4di |
⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = 1 ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 + 1 ) · 𝑋 ) = ( 1 · 𝑋 ) ) |
| 21 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) |
| 23 |
20 22
|
eqeq12d |
⊢ ( 𝑁 = 0 → ( ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ↔ ( 1 · 𝑋 ) = ( ( 0 · 𝑋 ) + 𝑋 ) ) ) |
| 24 |
16 23
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 = 0 → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |
| 26 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℕ0 ) |
| 27 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 28 |
26 27
|
sylib |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 29 |
7 25 28
|
mpjaodan |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |