| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnnsubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgnnsubcl.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgnnsubcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
mulgnnsubcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 5 |
|
mulgnnsubcl.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 6 |
|
mulgnnsubcl.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 7 |
|
mulgnn0subcl.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 8 |
|
mulgnn0subcl.c |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 9 |
1 2 3 4 5 6
|
mulgnnsubcl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 10 |
9
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 11 |
10
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 12 |
11
|
3adantl2 |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 13 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 14 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 15 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 16 |
14 15
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 17 |
1 7 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 0 · 𝑋 ) = 0 ) |
| 19 |
13 18
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = 0 ) |
| 20 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 0 ∈ 𝑆 ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 0 ∈ 𝑆 ) |
| 22 |
19 21
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 23 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
| 24 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 26 |
12 22 25
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |